【題目】已知m,n為兩條不同的直線,α,β為兩個不同的平面,則下列命題中正確的有( ) 1)mα,nα,m∥β,n∥βα∥β
2)n∥m,n⊥αm⊥α
3)α∥β,mα,nβm∥n
4)m⊥α,m⊥nn∥α
A.0個
B.1個
C.2個
D.3個
【答案】B
【解析】解:對于(1),mα,nα,m∥β,n∥βα∥β,錯誤,當m∥n時,α與β可能相交; 對于(2),n∥m,n⊥αm⊥α,正確,原因是:n⊥α,則n垂直α內(nèi)的兩條相交直線,又m∥n,則m也垂直α內(nèi)的這兩條相交直線,則m⊥α;
對于(3),α∥β,mα,nβm∥n,錯誤,m與n可能異面;
對于(4),m⊥α,m⊥nn∥α,錯誤,也可能是nα.
∴正確命題的個數(shù)是1個.
故選:B.
【考點精析】認真審題,首先需要了解空間中直線與平面之間的位置關系(直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點).
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2﹣4x﹣5<0},集合B={y|y>0},則A∩B=( )
A.{x|0<x<5}B.{x|﹣5<x<0}C.(﹣1,+∞)D.{x|﹣1<x≤10}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對定義在[0,1]上的函數(shù)f(x),如果同時滿足以下三個條件:
①對任意x∈[0,1],總有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,有f(x1+x2)≥f(x1)+f(x2)成立.
則稱函數(shù)f(x)為理想函數(shù).
(1)判斷g(x)=2x﹣1(x∈[0,1])是否為理想函數(shù),并說明理由;
(2)若f(x)為理想函數(shù),求f(x)的最小值和最大值;
(3)若f(x)為理想函數(shù),假設存在x0∈[0,1]滿足f[f(x0)]=x0,求證:f(x0)=x0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】華羅庚是上世紀我國偉大的數(shù)學家,以華氏命名的數(shù)學科研成果有“華氏定理”、“華氏不等式”、“華王方法”等.他除了數(shù)學理論研究,還在生產(chǎn)一線大力推廣了“優(yōu)選法”和“統(tǒng)籌法”.“優(yōu)選法”,是指研究如何用較少的試驗次數(shù),迅速找到最優(yōu)方案的一種科學方法.在當前防疫取得重要進展的時刻,為防范機場帶來的境外輸入,某機場海關在對入境人員進行檢測時采用了“優(yōu)選法”提高檢測效率:每16人為組,把每個人抽取的鼻咽拭子分泌物混合檢查,如果為陰性則全部放行;若為陽性,則對該16人再次抽檢確認感染者.某組16人中恰有一人感染(鼻咽拭子樣本檢驗將會是陽性),若逐一檢測可能需要15次才能確認感染者.現(xiàn)在先把這16人均分為2組,選其中一組8人的樣本混合檢查,若為陰性則認定在另一組;若為陽性,則認定在本組.繼續(xù)把認定的這組的8人均分兩組,選其中一組4人的樣本混合檢查……以此類推,最終從這16人中認定那名感染者需要經(jīng)過( )次檢測.
A.3B.4C.6D.7
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題P:n∈N,n2<2n , 則¬P為( )
A.n∈N,n2<2n
B.n∈N,n2≥2n
C.n∈N,n2≥2n
D.n∈N,n2>2n
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com