【題目】根據(jù)預(yù)測,某地第n(n∈N*)個(gè)月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個(gè)月底的共享單車的保有量是前n個(gè)月的累計(jì)投放量與累計(jì)損失量的差.
(1)求該地區(qū)第4個(gè)月底的共享單車的保有量;
(2)已知該地共享單車停放點(diǎn)第n個(gè)月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設(shè)在某月底,共享單車保有量達(dá)到最大,問該保有量是否超出了此時(shí)停放點(diǎn)的單車容納量?

【答案】
(1)解:∵an= ,bn=n+5

∴a1=5×14+15=20

a2=5×24+15=95

a3=5×34+15=420

a4=﹣10×4+470=430

b1=1+5=6

b2=2+5=7

b3=3+5=8

b4=4+5=9

∴前4個(gè)月共投放單車為a1+a2+a3+a4=20+95+420+430=965,

前4個(gè)月共損失單車為b1+b2+b3+b4=6+7+8+9=30,

∴該地區(qū)第4個(gè)月底的共享單車的保有量為965﹣30=935


(2)解:令an≥bn,顯然n≤3時(shí)恒成立,

當(dāng)n≥4時(shí),有﹣10n+470≥n+5,解得n≤

∴第42個(gè)月底,保有量達(dá)到最大.

當(dāng)n≥4,{an}為公差為﹣10等差數(shù)列,而{bn}為等差為1的等比數(shù)列,

∴到第42個(gè)月底,單車保有量為 ×39+535﹣ ×42= ×39+535﹣ ×42=8782.

S42=﹣4×16+8800=8736.

∵8782>8736,

∴第42個(gè)月底單車保有量超過了容納量


【解析】(1)計(jì)算出{an}和{bn}的前4項(xiàng)和的差即可得出答案;(2)令an≥bn得出n≤42,再計(jì)算第42個(gè)月底的保有量和容納量即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD的三視圖如圖所示,則四棱錐P﹣ABCD的四個(gè)側(cè)面中面積最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙、丁四位同學(xué)中選拔一位成績較穩(wěn)定的優(yōu)秀選手,參加山東省職業(yè)院校技能大賽,在同樣條件下經(jīng)過多輪測試,成績分析如表所示,根據(jù)表中數(shù)據(jù)判斷,最佳人選為( ) 成績分析表

平均成績

96

96

85

85

標(biāo)準(zhǔn)差s

4

2

4

2


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A(x1 , y1),B(x2 , y2)是橢圓 上的兩點(diǎn),已知向量 =( , ), =( , ),若 =0且橢圓的離心率e= ,短軸長為2,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)函數(shù):①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,從中任選2個(gè),則事件“所選2個(gè)函數(shù)的圖象有且僅有一個(gè)公共點(diǎn)”的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的四棱錐 中,四邊形ABCD為正方形, 平面PAB,且 分別為 的中點(diǎn), .

證明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , ,向量 垂直,且 .
(1)求數(shù)列 的通項(xiàng)公式;
(2)若數(shù)列 滿足 ,求數(shù)列 的前 項(xiàng)和 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數(shù)g(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2 ,e2+ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中, ,若不等式 恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案