已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,AB是過F1的弦,則△ABF2的周長是( 。
A.2aB.4aC.8aD.2a+2b
∵F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,
AB是過F1的弦,
∴△ABF2的周長=|AF1|+|AF2|+|BF1|+|BF2|
=2a+2a
=4a.
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
3
=1
內(nèi)有一點P(1,-1),F(xiàn)為橢圓的右焦點,在橢圓上有一動點M,則|MP|+|MF|的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等邊△ABC中,若以A,B為焦點的橢圓經(jīng)過點C,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長、短軸端點分別為A、B,從橢圓上一點M(在x軸上方)向x軸作垂線,恰好通過橢圓的左焦點F1,
AB
OM

(1)求橢圓的離心率e;
(2)設(shè)Q是橢圓上任意一點,F(xiàn)1、F2分別是左、右焦點,求∠F1QF2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知橢圓
x2
4
+
y2
3
=1的左焦點為F,直線x-y-1=0,x-y+1=0與橢圓分別相交于點A,B,C,D,則AF+BF+CF+DF=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從橢圓短軸的一個端點看長軸的兩個端點的視角為120°,那么此橢圓的離心率為(  )
A.
1
2
B.
2
2
C.
3
3
D.
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,已知△ABC的頂點A(-5,0),B(5,0)且頂點C在橢圓
x2
169
+
y2
144
=1
上,則
sinA+sinB
sinC
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若
AP
=2
PB

|AP|=2|PB|,則橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定點N(1,0),動點A、B分別在圖中拋物線y2=4x及橢圓
x2
4
+
y2
3
=1
的實線部分上運動,且ABx軸,則△NAB的周長l取值范圍是( 。
A.(
2
3
,2
B.(
10
3
,4
C.(
51
16
,4
D.(2,4)

查看答案和解析>>

同步練習(xí)冊答案