設過拋物線y2=2px(p>0)的焦點F的弦PQ,則以PQ為直徑的圓與拋物線準線的位置關系是( 。
分析:設PQ的中點到準線的距離是d,利用拋物線的定義求得P,Q到準線的距離,再根據(jù)梯形中位線的關系可得到答案.
解答:解:設PQ的中點是M,M到準線的距離是d.
而P到準線的距離d1=|PF|,Q到準線的距離d2=|QF|.
又M到準線的距離d是梯形的中位線,故有d=
|PF|+|QF|
2
=
|PQ|
2

即圓心M到準線的距離等于半徑
|PQ|
2
,
所以圓與準線是相切.
故選B.
點評:本題主要考查拋物線的基本性質,考查拋物線的定義.屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設p>0是一常數(shù),過點Q(2p,0)的直線與拋物線y2=2px交于相異兩點A、B,以線段AB為直經(jīng)作圓H(H為圓心).試證拋物線頂點在圓H的圓周上;并求圓H的面積最小時直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)F是拋物線y2=2px(p>0)的焦點,過焦點F且傾斜角為θ的直線交拋物線于A,B兩點,設|AF|=a,|BF|=b,則:
①若θ=60°且a>b,則
a
b
的值為
3
3
;②a+b=
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
|AB|=
2p
sin2θ
2p(tan2θ+1)
tan2θ
(用p和θ表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:閱讀理解

(2008•浦東新區(qū)二模)問題:過點M(2,1)作一斜率為1的直線交拋物線y2=2px(p>0)于不同的兩點A,B,且點M為AB的中點,求p的值.請閱讀某同學的問題解答過程:
解:設A(x1,y1),B(x2,y2),則y12=2px1,y22=2px2,兩式相減,得(y1-y2)(y1+y2)=2p(x1-x2).又kAB=
y1-y2x1-x2
=1
,y1+y2=2,因此p=1.
并給出當點M的坐標改為(2,m)(m>0)時,你認為正確的結論:
p=m(0<m<4)
p=m(0<m<4)

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

設A (x1 ,y1 ),B (x2 ,y2)為拋物線y2=2px(p>0)上位于x 軸兩側的兩點.  
(1)若y1y2=-2p ,證明直線AB 恒過一個定點; 
(2)若p=2 ,∠AOB(O為坐標原點)為鈍角,求直線AB 在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2004年重慶市高考數(shù)學試卷(文科)(解析版) 題型:解答題

設p>0是一常數(shù),過點Q(2p,0)的直線與拋物線y2=2px交于相異兩點A、B,以線段AB為直經(jīng)作圓H(H為圓心).試證拋物線頂點在圓H的圓周上;并求圓H的面積最小時直線AB的方程.

查看答案和解析>>

同步練習冊答案