設(shè)圓滿足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3:1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程.
分析:圓被x軸分成兩段圓弧,其弧長(zhǎng)的比為3:1,劣弧所對(duì)的圓心角為90°,設(shè)圓的圓心為P(a,b),圓P截X軸所得的弦長(zhǎng)為
2
r

截y軸所得弦長(zhǎng)為2;可得圓心軌跡方程,圓心到直線l:x-2y=0的距離最小,利用基本不等式,求得圓的方程.
解答:解法一:設(shè)圓的圓心為P(a,b),半徑為r,則點(diǎn)P到x軸,y軸的距離分別為|b|,|a|.
由題設(shè)知圓P截x軸所得劣弧對(duì)的圓心角為90°,知圓P截X軸所得的弦長(zhǎng)為
2
r
,故r2=2b2,
又圓P截y軸所得的弦長(zhǎng)為2,所以有
r2=a2+1.
從而得2b2-a2=1.
又點(diǎn)P(a,b)到直線x-2y=0的距離為d=
|a-2b|
5
,
所以5d2=|a-2b|2
=a2+4b2-4ab
≥a2+4b2-2(a2+b2
=2b2-a2=1,
當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立,此時(shí)5d2=1,從而d取得最小值.
由此有
a=b
2b2-a2=1

解此方程組得
a=1
b=1
a=-1
b=-1.

由于r2=2b2r=
2

于是,所求圓的方程是
(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
解法二:同解法一,得d=
|a-2b|
5

a-2b=±
5
d

a2=4b2±4
5
bd+5d2

將a2=2b2-1代入①式,整理得2b2±4
5
db+5d2+1=0

把它看作b的二次方程,由于方程有實(shí)根,故判別式非負(fù),即
△=8(5d2-1)≥0,
得5d2≥1.
∴5d2有最小值1,從而d有最小值
5
5

將其代入②式得2b2±4b+2=0.解得b=±1.
將b=±1代入r2=2b2,得r2=2.由r2=a2+1得a=±1.
綜上a=±1,b=±1,r2=2.
由|a-2b|=1知a,b同號(hào).
于是,所求圓的方程是
(x-1)2+(y-1)2=2,或(x+1)2+(y+1)2=2.
點(diǎn)評(píng):本小題主要考查軌跡的思想,求最小值的方法,考查綜合運(yùn)用知識(shí)建立曲線方程的能力.易錯(cuò)的地方,
P到x軸,y軸的距離,不能正確利用基本不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
=2
QP
的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線,切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件數(shù)學(xué)公式的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷3(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省黃岡市高考數(shù)學(xué)交流試卷(文科)(解析版) 題型:解答題

已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)過(guò)點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案