已知圓C過點P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(1)求圓C的方程;
(2)過點P作兩條相異直線分別與圓C相交于A、B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點,試判斷直線OP和AB是否平行?請說明理由.

(1)x2+y2=2(2)一定平行

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個點到曲線的距離為,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C:
(1)當(dāng)為何值時,曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點,且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于,兩點,是否存在實數(shù),使得以為直徑的圓過原點,若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓滿足:
①截y軸所得弦長為2;
②被x軸分成兩段圓弧,其弧長的比為.
求在滿足條件①②的所有圓中,使代數(shù)式取得最小值時,圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m取什么值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交,相切,相離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的圓心與點P(-2,1)關(guān)于直線y=x+1對稱,直線3x+4y-11=0與圓C相交于A、B兩點,且=6,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知直線lyx,圓C1的圓心為(3,0),且經(jīng)過點A(4,1).
 
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點BD分別為圓C1、C2上任意一點,求|BD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過點Q(-2,)作圓O:x2+y2=r2(r>0)的切線,切點為D,且|QD|=4.
(1)求r的值.
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點,過點P作圓O的切線l,且l交x軸于點A,交y軸于點B,設(shè)=+,求||的最小值(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點O、B,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2xy-4=0與圓C交于點M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)PQ分別是直線lxy+2=0和圓C的動點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案