【題目】對(duì)定義域?yàn)?/span>D的函數(shù),若存在距離為d的兩條平行直線和.使得當(dāng)時(shí),恒成立,則稱(chēng)函數(shù)在有一個(gè)寬度為d的通道有下列函數(shù):(1);(2);(3);(4).其中在上通道寬度為1的函數(shù)是( 。
A. (1)(3) B. (2)(3) C. (1)(3)(4) D. (2)(3)(4)
【答案】A
【解析】
(1)只需考慮反比例函數(shù)在,上的值域即可,
(2)要分別考慮函數(shù)的值域和圖象性質(zhì),
(3)則需從函數(shù)圖象入手,尋找符合條件的直線,
(4)考慮冪函數(shù)的圖象和性質(zhì),才可做出正確判斷.
解:(1)當(dāng),時(shí),,此時(shí)存在直線,,滿足兩直線的距離,使恒成立,故在,有一個(gè)寬度為1的通道,(1)滿足條件.
(2)當(dāng),時(shí),,則函數(shù)值的最大值和最小值之間的距離,故在,不存在一個(gè)寬度為1的通道,(2)不滿足條件;
(3)當(dāng),時(shí),表示雙曲線在第一象限的部分,雙曲線的漸近線為,故可取另一直線為,滿足兩直線的距離,使恒成立,(3)滿足在,有一個(gè)寬度為1的通道;
(4)當(dāng),時(shí),,且函數(shù)單調(diào)遞增,故在,不存在一個(gè)寬度為1的通道;
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長(zhǎng)均為30千米(忽略內(nèi)、外環(huán)線長(zhǎng)度差異).
(1)當(dāng)9列列車(chē)同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長(zhǎng)候車(chē)時(shí)間為10分鐘,求內(nèi)環(huán)線列車(chē)的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車(chē)平均速度為25千米/小時(shí),外環(huán)線列車(chē)平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線共有18列列車(chē)全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長(zhǎng)候車(chē)時(shí)間之差不超過(guò)1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車(chē)運(yùn)行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)數(shù)滿足f(x)+x>對(duì)x∈R恒成立,且實(shí)數(shù)x,y滿足xf(x)﹣yf(y)>f(y)﹣f(x),則下列關(guān)系式恒成立的是( )
A.B.ln(x2+1)>ln(y2+1)
C.D.x﹣y>sinx﹣siny
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)若,當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求此時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在2013年的自主招生考試成績(jī)中隨機(jī)抽取40名學(xué)生的筆試成績(jī),按成績(jī)共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時(shí)規(guī)定成績(jī)?cè)?/span>85分以上的學(xué)生為“優(yōu)秀”,成績(jī)小于85分的學(xué)生為“良好”,且只有成績(jī)?yōu)?/span>“優(yōu)秀”的學(xué)生才能獲得面試資格.
(1)求出第4組的頻率,并補(bǔ)全頻率分布直方圖;
(2)根據(jù)樣本頻率分布直方圖估計(jì)樣本的中位數(shù)與平均數(shù);
(3)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學(xué)生中共選出5人,再?gòu)倪@5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,E、F、G、H分別是的中點(diǎn).
(1)證明:平面
(2)證明:平面平面.
(3)求直線AE與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2x+c,若不等式f(x)<0的解集是{x|-4<x<2}.
(1)求f(x)的解析式;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義證明;
(3)若函數(shù)f(x)在區(qū)間[m,m+2]上的最小值為-5,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】科學(xué)研究表明:人類(lèi)對(duì)聲音有不的感覺(jué),這與聲音的強(qiáng)度單位:瓦平方米有關(guān)在實(shí)際測(cè)量時(shí),常用單位:分貝來(lái)表示聲音強(qiáng)弱的等級(jí),它與聲音的強(qiáng)度I滿足關(guān)系式:是常數(shù),其中瓦平方米如風(fēng)吹落葉沙沙聲的強(qiáng)度瓦平方米,它的強(qiáng)弱等級(jí)分貝.
已知生活中幾種聲音的強(qiáng)度如表:
聲音來(lái)源
聲音大小 | 風(fēng)吹落葉沙沙聲 | 輕聲耳語(yǔ) | 很嘈雜的馬路 |
強(qiáng)度瓦平方米 | |||
強(qiáng)弱等級(jí)分貝 | 10 | m | 90 |
求a和m的值
為了不影響正常的休息和睡眠,聲音的強(qiáng)弱等級(jí)一般不能超過(guò)50分貝,求此時(shí)聲音強(qiáng)度I的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com