(13分) 如圖,直三棱柱中, ,.
(Ⅰ)證明:;
(Ⅱ)求二面角的正切值.
 

(Ⅰ)證明見解析;(Ⅱ)二面角的正切值為

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,長方體AC1中,AB=2,BC=AA1=1.E、F、G分別為棱DD1、D1C1、BC的中點.

(1)求證:平面平面;
(2)在底面A1D1上有一個靠近D1的四等分點H,求證: EH∥平面FGB1
(3)求四面體EFGB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
如圖,四棱錐的側面垂直于底面,,在棱上,的中點,二面角

(1)求的值;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
如圖,在底面是正方形的四棱錐中,,于點中點,上一點.
⑴求證:;
⑵確定點在線段上的位置,使//平面,并說明理由.
⑶當二面角的大小為時,求與底面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點,現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當取得最大值時,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,為底面的中心,的中點,設上的中點,求證:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分) 如圖,用一付直角三角板拼成一直二面角A—BD—C,若其中給定 AB="AD" =2,,,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

、如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(本小題滿分14分)

四棱錐中,側棱,底面是直角梯形,,且,的中點.
(1)求異面直線所成的角;
(2)線段上是否存在一點,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案