【題目】如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.
(1)求證:;
(2)若圓柱的體積,
①求三棱錐A1﹣APB的體積.
②在線段AP上是否存在一點(diǎn)M,使異面直線OM與所成角的余弦值為?若存在,請(qǐng)指出M的位置,并證明;若不存在,請(qǐng)說明理由.
【答案】(1)見解析;(2)①,②見解析
【解析】
(1)根據(jù),得出平面,故而;(2)①根據(jù)圓柱的體積計(jì)算,根據(jù)計(jì)算,,代入體積公式計(jì)算棱錐的體積;②先證明就是異面直線與所成的角,然后根據(jù)可得,故為的中點(diǎn).
(1)證明:∵P在⊙O上,AB是⊙O的直徑,
平面 又,
平面,又平面,故.
(2)①由題意,解得,
由,得,,
∴三棱錐的體積.
②在AP上存在一點(diǎn)M,當(dāng)M為AP的中點(diǎn)時(shí),使異面直線OM與所成角的余弦值為.
證明:∵O、M分別為的中點(diǎn),則,
就是異面直線OM與所成的角,
又,
在中,.
∴在AP上存在一點(diǎn)M,當(dāng)M為AP的中點(diǎn)時(shí),使異面直線OM與所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱
B.函數(shù)f(x)的圖象關(guān)于直線x= 對(duì)稱
C.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞減
D.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sinx的圖象向右平移 個(gè)單位,再將所得函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=sin(ωx+φ),(ω>0,|φ|< )的圖象,則( )
A.ω=2,φ=﹣
B.ω=2,φ=﹣
C.ω= ,φ=﹣
D.ω= ,φ=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用0,1,2,3,4五個(gè)數(shù)字組成五位數(shù).
(1)求沒有重復(fù)數(shù)字的五位數(shù)的個(gè)數(shù);
(2)求沒有重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,平面,平面,,且,是的中點(diǎn).
()求證:.
()若為線段上一點(diǎn),且,求證:平面.
()在棱上是否存在一點(diǎn),使得直線與平面所成的角為.若存在,指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數(shù)列{bn} 的前n項(xiàng)和為Tn , 若Tn≥tn2對(duì)n∈N*恒成立,則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面,,,,,異面直線和所成角等于.
(1)求直線和平面所成角的正弦值;
(2)在棱上是否存在一點(diǎn),使得平面與平面所成銳二面角的正切值為?若存在,指出點(diǎn)在棱上的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若對(duì)任意的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,的最大值是,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過點(diǎn)且與直線平行,直線過點(diǎn)且與直線垂直.
(Ⅰ)求直線,的方程.
(Ⅱ)若圓與,,同時(shí)相切,求圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com