【題目】設(shè)命題p:方程x2+2m-4x+m=0有兩個(gè)不等的實(shí)數(shù)根:命題qx[23],不等式x2-4x+13≥m2恒成立.

1)若命題p為真命題,則實(shí)數(shù)m的取值范圍;

2)若命題pq為真命題,命題pq為假命題,求實(shí)數(shù)m的取值范圍.

【答案】(1)m4m1;(2m-3或1≤m≤3或m4

【解析】

1)根據(jù)一元二次方程根與判別式△的關(guān)系求出m的范圍即可.

2)求出命題p,q為真命題的等價(jià)條件,結(jié)合復(fù)合命題真假關(guān)系進(jìn)行求解即可.

1)若命題p為真命題,則判別式△=2m-42-4m=4m-1)(m-4)>0,

解得m4m1

2)若命題q為真命題,則(x-22m2-9[2,3]恒成立.

∵當(dāng)x=2時(shí),(x-22取得最小值0

則0≥m2-9,即m2≤3,解得

“若命題pq為真命題,命題pq為假命題,所以命題p,q中一真一假,

當(dāng)p真且q假時(shí),,得m-3m4,

當(dāng)p假且q真時(shí),,解得1≤m≤3.

綜上所述:m-3或1≤m≤3或m4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

(1)函數(shù)的圖象關(guān)于點(diǎn)對稱;

(2)函數(shù)在區(qū)間內(nèi)是增函數(shù);

(3)函數(shù)是偶函數(shù);

(4)存在實(shí)數(shù),使;

(5)如果函數(shù)的圖象關(guān)于點(diǎn)中心對稱,那么的最小值為.

其中正確的命題的序號是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.

(1)求證:EF∥平面PAB;

(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個(gè)命題:

①三棱錐的體積為定值;

②經(jīng)過四點(diǎn)的球的直徑為;

③直線∥平面

④直線所成的角為;

其中真命題的個(gè)數(shù)是(。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x+

1)若關(guān)于x的不等式f3x)≤m3x+2[-22]上恒成立.求實(shí)數(shù)m的取值范圍;

2)若函數(shù)gx=f|2x-1|-3t-2有四個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】試用恰當(dāng)?shù)姆椒ū硎鞠铝屑?/span>.

1)使函數(shù)有意義的x的集合;

2)不大于12的非負(fù)偶數(shù);

3)滿足不等式的解集;

4)由大于10小于20的所有整數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識競賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績情況,從中抽取50名學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請你根據(jù)尚未完成的頻率分布表,解答下列問題:

(1)完成頻率分布表(直接寫出結(jié)果);

(2)若成績在90.5分以上的學(xué)生獲一等獎(jiǎng),試估計(jì)全校獲一等獎(jiǎng)的人數(shù),現(xiàn)在從全校所有獲一等獎(jiǎng)的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競賽,某班共有2名同學(xué)榮獲一等獎(jiǎng),求該班同學(xué)恰有1人參加競賽的概率.

分組

頻數(shù)

頻率

第1組

[60.5,70.5)

0.26

第2組

[70.5,80.5)

17

第3組

[80.5,90.5)

18

0.36

第4組

[90.5,100.5]

合計(jì)

50

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大以來,我國精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬人以上的目標(biāo),力爭2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從20166月底到20196月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號表示,例如:201612月底(時(shí)間序號為2)貧困戶為5.2萬戶.

(1)求關(guān)于的線性回歸方程,并預(yù)測到202012月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在20196月底時(shí),對全市貧困戶隨機(jī)抽取了100戶貧困戶,對每個(gè)家庭最主要經(jīng)濟(jì)收入來源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對口幫扶,每一名農(nóng)業(yè)技術(shù)人員對口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

同步練習(xí)冊答案