已知函數(shù)f(x)=log2(x+m),且f(0),f(2),f(6)成等差數(shù)列.
(1)求f(30)的值;
(2)若a,b,c是兩兩不相等的正數(shù),且a,b,c成等比數(shù)列,試判斷f(a)+f(c)與2f(b)的大小關(guān)系,并證明你的結(jié)論.
分析:(1)由等差數(shù)列的定義可建立關(guān)于m的方程,可解m的值,代入可得答案;
(2)由對數(shù)的運算性質(zhì)可得f(a)+f(c)與2f(b)的值,下面用作差法及基本不等式比較真數(shù)的大小即可.
解答:解:(1)由f(0),f(2),f(6)成差數(shù)列,
得2log2(2+m)=log2m+log2(6+m),即(m+2)2=m(m+6)(m>0)
解得m=2…(4分)
∴f(30)=log2(30+2)=5…(6分)
(2)由(1)可知:2f(b)=2log2(b+2)=log2(b+2)2,f(a)+f(c)=log2(a+2)(c+2),
∵b2=ac,∴(a+2)(c+2)-(b+2)2=ac+2(a+c)+4-b2-4b-4=2(a+c)-4b…(9分)
a+c>2
ac
=2b(a≠c)

∴2(a+c)-4b>0
log2(a+2)(c+2)>log2(b+2)2,
即f(a)+f(c)>2f(b)…(14分)
點評:本題為等差數(shù)列和等比數(shù)列的綜合應(yīng)用,涉及作差法比較大小和基本不等式的應(yīng)用,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案