已知a12+a22+…+an2=1,x12+x22+…+xn2=1,則a1x1+a2x2+…+anxn的最大值為( 。
分析:利用不等式的性質(zhì)a2+b2≥2ab證明可求.
解答:解:因?yàn)閍2+b2≥2ab,所以2=a12+a22+…+an2+x12+x22+…+xn2=(
a
2
1
+
x
2
1
)+…+(
a
2
n
+
x
2
n
)
≥2a1x1+…+2anxn=2(a1x1+…+anxn),
即a1x1+a2x2+…+anxn≤1.
故選A.
點(diǎn)評:本題主要考查基本不等式的運(yùn)用,用注意定理的使用條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a12+a22+…+an2=1,x12+x22+…+xn2=1,則a1x1+a2x2+…+anxn的最大值是(    )

A.1             B.2             C.3             D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a12+a22+a32+…+an2=1,x12+x22+…+xn2=1,則a1x1+a2x2+…+anxn的最大值是 …(    )

A.1           B.2               C.          D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a12+a22+…+an2=1,x12+x22+…+xn2=1,則a1x1+a2x2+…+anxn的最大值為( 。
A.1B.nC.
n
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《3.2 一般形式的柯西不等式》2013年同步練習(xí)(解析版) 題型:選擇題

已知a12+a22+…+an2=1,x12+x22+…+xn2=1,則a1x1+a2x2+…+anxn的最大值為( )
A.1
B.n
C.
D.2

查看答案和解析>>

同步練習(xí)冊答案