設(shè)橢圓過點(diǎn),且焦點(diǎn)為。

(1)求橢圓的方程;

(2)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)A、B時(shí),在線段上取點(diǎn)

滿足,證明:點(diǎn)總在某定直線上。

(1)所求橢圓方程為

(2)證明見解析


解析:

(1)由題意:  ,解得,

所求橢圓方程為

(2)解:設(shè)過P的直線方程為:,

設(shè),

,

,∴,即,

化簡得:

,

去分母展開得:

化簡得:,解得:

又∵Q在直線上,

,∴

∴Q恒在直線上。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年安徽卷理) (本小題滿分13分)

設(shè)橢圓過點(diǎn),且左焦點(diǎn)為

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交于兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足。證明:點(diǎn)Q總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

()(本小題滿分13分)

設(shè)橢圓過點(diǎn),且著焦點(diǎn)為

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足,證明:點(diǎn)總在某定直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓過點(diǎn),且左焦點(diǎn)為

(Ⅰ)求橢圓C的方程;

(Ⅱ)當(dāng)過點(diǎn)P(4,1)的動(dòng)直線l與橢圓C相交于兩不同點(diǎn)A,B時(shí),在線段AB上取點(diǎn)Q,滿足。證明:點(diǎn)Q總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓過點(diǎn),且著焦點(diǎn)為

(Ⅰ)求橢圓的方程;

(Ⅱ)當(dāng)過點(diǎn)的動(dòng)直線與橢圓相交于兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足,證明:點(diǎn)總在某定直線上

查看答案和解析>>

同步練習(xí)冊(cè)答案