【題目】已知函數(shù)),的部分圖象如圖所示,且,則( )

A. 6 B. 4 C. -4 D. -6

【答案】D

【解析】分析:利用三角函數(shù)恒等變換的應用化簡函數(shù)解析式可得f(x)=5sin(2ωx﹣φ)﹣1,其中sinφ=,cosφ=,由函數(shù)圖象可求周期T,由f(x0)=4,利用正弦函數(shù)的對稱性可求sin[2ω(x0+1)﹣φ)=﹣1,利用正弦函數(shù)的周期性進而可求f(x0+1)的值.

詳解:∵f(x)=6sinωxcosωx﹣8cos2ωx+3

=3sin2ωx﹣4cos2ωx﹣1

=5sin(2ωx﹣φ)﹣1,其中sinφ=,cosφ=

設函數(shù)f(x)的最小正周期為T,則T=(θ+)﹣θ=,可得:T=2,

∵f(x0)=4,可得:sin(2ωx0﹣φ)=1,即f(x)關(guān)于x=x0對稱,而x=x0+1x=x0的距離為半個周期,

∴sin[2ω(x0+1)﹣φ)=﹣1,

∴f(x0+1)=5sin[2ω(x0+1)﹣φ]﹣1=5×(﹣1)﹣1=﹣6.

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線E:x2=2py(p>0)的焦點F作斜率率分別為k1 , k2的兩條不同直線l1 , l2 , 且k1+k2=2.l1與E交于點A,B,l2與E交于C,D,以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在直線記為l.
(1)若k1>0,k2>0,證明: ;
(2)若點M到直線l的距離的最小值為 ,求拋物線E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某個產(chǎn)品有若干零部件構(gòu)成,加工時需要經(jīng)過7道工序,分別記為.其中,有些工序因為是制造不同的零部件,所以可以在幾臺機器上同時加工;有些工序因為是對同一個零部件進行處理,所以存在加工順序關(guān)系,若加工工序必須要在工序完成后才能開工,則稱的緊前工序.現(xiàn)將各工序的加工次序及所需時間(單位:小時)列表如下:

工序

加工時間

3

4

2

2

2

1

5

緊前工序

現(xiàn)有兩臺性能相同的生產(chǎn)機器同時加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時間是( )

(假定每道工序只能安排在一臺機器上,且不能間斷.)

A. 11個小時 B. 10個小時 C. 9個小時 D. 8個小時

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某設計師設計的型飾品的平面圖,其中支架,,兩兩成,,且.現(xiàn)設計師在支架上裝點普通珠寶,普通珠寶的價值為,且長成正比,比例系數(shù)為為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且的面積成正比,比例系數(shù)為.設

1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

2)求的最大值及相應的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中.

(Ⅰ)當時,求函數(shù)的極值;

(Ⅱ)當時,證明:函數(shù)不可能存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為數(shù)列的前項和,,若關(guān)于正整數(shù)的不等式的解集中的整數(shù)解有兩個,則正實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若方程有五個不同的根,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設觀賞視角

(1)若問:觀察者離墻多遠時,視角最大?

(2)若變化時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)求函數(shù) 的單調(diào)區(qū)間;

(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案