【題目】扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè);
(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對(duì)稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);
試研究(1)(2)兩種方式下矩形面積的最大值,并說(shuō)明兩種方式下哪一種矩形面積最大?
【答案】方式一最大值
【解析】
試題(1)運(yùn)用公式時(shí)要注意審查公式成立的條件,要注意和差、倍角的相對(duì)性,要注意升冪、降冪的靈活運(yùn)用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對(duì)角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對(duì)式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當(dāng)選擇公式進(jìn)行變形;(3)把形如化為,可進(jìn)一步研究函數(shù)的周期、單調(diào)性、最值和對(duì)稱性.
試題解析: 解(1)在中,設(shè),則
又
當(dāng)即時(shí),
(Ⅱ)令與的交點(diǎn)為,的交點(diǎn)為,則,
于是,又
當(dāng)即時(shí),取得最大值.
,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表為2015年至2018年某百貨零售企業(yè)的年銷售額(單位:萬(wàn)元)與年份代碼的對(duì)應(yīng)關(guān)系,其中年份代碼年份-2014(如:代表年份為2015年)。
年份代碼 | 1 | 2 | 3 | 4 |
年銷售額 | 105 | 155 | 240 | 300 |
(1)已知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)2019年該百貨零售企業(yè)的年銷售額;
(2)2019年,美國(guó)為遏制我國(guó)的發(fā)展,又祭出“長(zhǎng)臂管轄”的霸權(quán)行徑,單方面發(fā)起對(duì)我國(guó)的貿(mào)易戰(zhàn),有不少人對(duì)我國(guó)經(jīng)濟(jì)發(fā)展前景表示擔(dān)憂.此背景下,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的銷售額能否持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了60為男顧客、50位女顧客,得到如下列聯(lián)表:
持樂(lè)觀態(tài)度 | 持不樂(lè)觀態(tài)度 | 總計(jì) | |
男顧客 | 45 | 15 | 60 |
女顧客 | 30 | 20 | 50 |
總計(jì) | 75 | 35 | 110 |
問(wèn):能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為對(duì)該百貨零售企業(yè)的年銷售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):回歸直線方程,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若對(duì)定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù).
(1)若,(0,),試判斷是否為“1距”增函數(shù),并說(shuō)明理由;
(2)若,R是“a距”增函數(shù),求a的取值范圍;
(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過(guò)點(diǎn)F,且與橢圓交于兩點(diǎn),P為直線上的一點(diǎn),
若為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種產(chǎn)品的質(zhì)量用其質(zhì)量指標(biāo)值來(lái)衡量)質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品.現(xiàn)用兩種新配方(分別稱為配方和配方)做試驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:
配方的頻數(shù)分布表:
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
頻數(shù) | 8 | 20 | 42 | 22 | 8 |
配方的頻數(shù)分布表:
指標(biāo)值分組 | [90,94) | [94,98) | [98,102) | [102,106] | [106,110] |
頻數(shù) | 4 | 12 | 42 | 32 | 10 |
(1)分別估計(jì)用配方、配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;
(2)已知用配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)(單位:元)與其質(zhì)量指標(biāo)值的關(guān)系為,估計(jì)用配方生產(chǎn)的一件產(chǎn)品的利潤(rùn)大于的概率,并求用配方生產(chǎn)的上述件產(chǎn)品的平均利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左焦點(diǎn),離心率為,點(diǎn)為橢圓上任一點(diǎn),且的最小值為.
(1)求橢圓的方程;
(2)若直線過(guò)橢圓的左焦點(diǎn),與橢圓交于兩點(diǎn),且的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.
(Ⅰ)請(qǐng)按字母F,G,H標(biāo)記在正方體相應(yīng)地頂點(diǎn)處(不需要說(shuō)明理由)
(Ⅱ)判斷平面BEG與平面ACH的位置關(guān)系.并說(shuō)明你的結(jié)論.
(Ⅲ)證明:直線DF平面BEG
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由0、1、2、3、4五個(gè)數(shù)字任取三個(gè)數(shù)字,組成能被3整除的沒(méi)有重復(fù)數(shù)字的三位數(shù),共有( )個(gè).
A. 14B. 16C. 18D. 20
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com