已知向量
a
,
b
是相互垂直的單位向量,且|
c
|=13,
c
a
=3
c
b
=4
,則對于任意的實(shí)數(shù)t1,t2,|
c
-t1
a
-t2
b
|的最小值為(  )
A.5B.7C.12D.13
|
c
-t1
a
-t2
b
|2=
c
2+t12
a
2+t22
b
2-2t1
c
a
)-2t2
c
b
)+2t1t2
a
b

a
,
b
是相互垂直的單位向量,且|
c
|=13,
c
a
=3
,
c
b
=4
,
∴|
c
-t1
a
-t2
b
|2=169+t12+t22-6t1-8t2=(t1-3)2+(t2-4)2+144
由此可得,當(dāng)且僅當(dāng)t1=3,t2=4時,|
c
-t1
a
-t2
b
|2的最小值為144.
∴|
c
-t1
a
-t2
b
|的最小值為
144
=12
故選:C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,已知
AB
AC
=9
,sinB=cosA•sinC,S△ABC=6,P為線段AB上的一點(diǎn),且
CP
=x
CA
|
CA
|
+y•
CB
CB
,則
1
x
+
1
y
的最小值為( 。
A.
7
6
B.
7
12
C.
7
12
+
3
3
D.
7
6
+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是半圓O的直徑,C,D是弧AB三等分點(diǎn),M,N是線段AB的三等分點(diǎn),若OA=6,則
MD
NC
的值是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下圖所示,在△ABO中,
OC
=
1
4
OA
,
OD
=
1
2
OB
,AD與BC相交于點(diǎn)M,設(shè)
OA
=
a
,
OB
=
b
,試用
a
,
b
表示
OM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)G是△ABC的重心,
AG
.
AB
AC
(λ,μ∈R),若∠A=120°,
.
AB
AC
=-2
,則|
AG
|
的最小值是( 。
A.
3
3
B.
2
2
C.
2
3
D.
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC為等邊三角形,AB=2.設(shè)點(diǎn)P,Q滿足
AP
AB
AQ
=(1-λ)
AC
,λ∈R.若
BQ
CP
=-
3
2
,則λ=(  )
A.
1
2
B.
2
2
C.
10
2
D.
-3±
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α,β,且α+β=π,試問直線l是否過定點(diǎn)?若過,求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過圓的圓心C,且與直線垂直的直線方程是 (   )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知,,任意點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,用、表示向量

查看答案和解析>>

同步練習(xí)冊答案