【題目】在平面直角坐標系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ⊥ ,求tanx的值;
(2)若 與 的夾角為 ,求x的值.
【答案】
(1)解:若 ⊥ ,
則 =( ,﹣ )(sinx,cosx)= sinx﹣ cosx=0,
即 sinx= cosx
sinx=cosx,即tanx=1;
(2)解:∵| |= ,| |= =1, =( ,﹣ )(sinx,cosx)= sinx﹣ cosx,
∴若 與 的夾角為 ,
則 =| || |cos = ,
即 sinx﹣ cosx= ,
則sin(x﹣ )= ,
∵x∈(0, ).
∴x﹣ ∈(﹣ , ).
則x﹣ =
即x= + =
【解析】(1)若 ⊥ ,則 =0,結(jié)合三角函數(shù)的關(guān)系式即可求tanx的值;(2)若 與 的夾角為 ,利用向量的數(shù)量積的坐標公式進行求解即可求x的值.
【考點精析】根據(jù)題目的已知條件,利用數(shù)量積表示兩個向量的夾角的相關(guān)知識可以得到問題的答案,需要掌握設、都是非零向量,,,是與的夾角,則.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD中,
(1)點E是AB的中點,點F是BC的中點,將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于點A′.求證:A′D⊥EF
(2)當BE=BF= BC時,求三棱錐A′﹣EFD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點為圓心,橢圓的短半軸為半徑的圓與直線x﹣y+ =0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求 的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式和S=f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分別為( )
A.f(x)= sin x+1,S=2016
B.f(x)= cos x+1,S=2016
C.f(x)= sin x+1,S=2016.5
D.f(x)= cos x+1,S=2016.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a為正的常數(shù),函數(shù)f(x)=|ax﹣x2|+lnx.
(1)若a=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設g(x)= ,求g(x)在區(qū)間[1,e]上的最小值.(e≈2.71828為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程是(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為,且直線與曲線交于,兩點.
(Ⅰ)求曲線的直角坐標方程及直線恒過的定點的坐標;
(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com