精英家教網 > 高中數學 > 題目詳情

【題目】函數f(x)= +lg 的定義域為(
A.(2,3)
B.(2,4]
C.(2,3)∪(3,4]
D.(﹣1,3)∪(3,6]

【答案】C
【解析】解:要使函數有意義,則 ,
,
>0等價為① ,即x>3,
,即 ,此時2<x<3,
即2<x<3或x>3,
∵﹣4≤x≤4,
∴解得3<x≤4且2<x<3,
即函數的定義域為(2,3)∪(3,4],
故選:C
【考點精析】解答此題的關鍵在于理解函數的定義域及其求法的相關知識,掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②是分式函數時,定義域是使分母不為零的一切實數;③是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)討論函數的單調性,并證明當時, ;

(Ⅱ)證明:當時,函數有最小值,設最小值為,求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣)= , C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且∠AOB= , 求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數,在同一直角坐標系中f(x)與g(x)相同的一組是(
A.f(x)= ,g(x)=
B.f(x)= ,g(x)=x﹣3
C.f(x)= ,g(x)=
D.f(x)=x,g(x)=lg(10x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)當為常數,且在區(qū)間變化時,求的最小值;

(2)證明:對任意的,總存在,使得

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖F1、F2是橢圓C1+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知AB為半圓O的直徑,且AB=4,C為半圓上一點,過點C作半圓的切線CD,過A點作AD⊥CD于D,交半圓于點E,DE=1.

(Ⅰ)證明:AC平分∠BAD;

(Ⅱ)求BC的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對任意一個確定的二面角α﹣l﹣β,a和b是空間的兩條異面直線,在下面給出的四個條件中,能使a和b所成的角也確定的是(
A.a∥a且b∥β
B.a∥a且b⊥β
C.aα且b⊥β
D.a⊥α且b⊥β

查看答案和解析>>

同步練習冊答案