如圖,在中,邊上的高,,沿翻折,使得,得到幾何體。

(1)求證:
(2)求與平面所成角的正切值。

(1)只需證BD⊥面ACD即可;(2)。

解析試題分析:(1)證明
             6分
(2)



與平面所成角。
中,     12分
考點(diǎn):線面垂直的判斷;線線垂直的判斷;直線與平面所成的角。
點(diǎn)評:證明線線垂直的常用方法:
①兩條直線所成角為90°(勾股定理);
②線面垂直Þ線線垂直

③三垂線定理及其逆定理
                              三垂線定理:
三垂線逆定理:
④兩直線平行,其中一條垂直于第三條直線,則另一條也垂直于這條直線。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
如圖,四邊形為矩形,平面,上的點(diǎn),且平面.

(1)求證:;
(2)求三棱錐的體積;
(3)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,棱長為2的正方體中,E,F滿足

(Ⅰ)求證:EF//平面AB;
(Ⅱ)求證:EF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

圖1,平面四邊形關(guān)于直線對稱,,.把沿折起(如圖2),使二面角的余弦值等于

對于圖二,完成以下各小題:
(Ⅰ)求兩點(diǎn)間的距離;
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 是邊長為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,,E、F分別是AB、PD的中點(diǎn).

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求三棱錐P-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖,已知四棱錐P—ABCD中,底面ABCD為菱形,PA平面ABCD,,BC=1,E為CD的中點(diǎn),PC與平面ABCD成角。

(1)求證:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,平行四邊形中,,沿折起到的位置,使平面平面

(I)求證:;     
(Ⅱ)求三棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案