【題目】若圓和圓關于直線對稱,過點的圓軸相切,則圓心的軌跡方程是( )

A. B.

C. D.

【答案】C

【解析】

求出兩個圓的圓心坐標,兩個半徑,利用兩個圓關于直線的對稱知識,求出a的值,然后求

出過點C(﹣a,a)的圓Py軸相切,就是圓心到C的距離等于圓心到y軸的距離,即可

求出圓心P的軌跡方程.

x2+y2﹣ax+2y+1=0的圓心(),因為圓x2+y2﹣ax+2y+1=0與圓x2+y2=1關于直線

y=x﹣1對稱,設圓心和(0,0)的中點為),

所以()滿足直線y=x﹣1方程,解得a=2,

過點C(﹣2,2)的圓Py軸相切,圓心P的坐標為(x,y)

所以 解得:y2+4x﹣4y+8=0,

所以圓心的軌跡方程是y2+4x﹣4y+8=0,

故答案為:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求曲線在點處的切線方程;

2)若關于的方程有三個不同的實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fxφ)﹣cosωx)(),x0x是函數(shù)的yfx)圖象的兩條相鄰對稱軸.

1)求f)的值;

2)將yfx)的圖象向右平移個單位后,再將所得的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)ygx)的圖象,求ygx)的單調區(qū)間,并求其在[]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,定點是圓上的一動點,線段的垂直平分線交半徑點.

1)求點的軌跡的方程;

2)四邊形的四個頂點都在曲線上,且對角線過原點,若,求證:四邊形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為(

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是菱形,,.

(1)若,求所成角的余弦值;

(2)當平面與平面垂直時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在直線.

(1)若圓軸的正半軸相切,且該圓截軸所得弦的長為,求圓的標準方程;

(2)在(1)的條件下,直線與圓交于兩點,,若以為直徑的圓過坐標原點,求實數(shù)的值;

(3)已知點,圓的半徑為3,且圓心在第一象限,若圓上存在點,使(為坐標原點),求圓心的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某港口的水深(米)是時間,單位:小時)的函數(shù),下面是每天時間與水深的關系表:

經過長期觀測,可近似的看成是函數(shù)

1)根據(jù)以上數(shù)據(jù),求出的解析式;

2)若船舶航行時,水深至少要米才是安全的,那么船舶在一天中的哪幾段時間可以安全的進出該港?

查看答案和解析>>

同步練習冊答案