【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

【答案】解:設(shè)圓心為(3t,t),半徑為r=|3t|,
則圓心到直線y=x的距離d= =| t|,
由勾股定理及垂徑定理得:( 2=r2﹣d2 , 即9t2﹣2t2=7,
解得:t=±1,
∴圓心坐標(biāo)為(3,1),半徑為3;圓心坐標(biāo)為(﹣3,﹣1),半徑為3,
則(x﹣3)2+(y﹣1)2=9或(x+3)2+(y+1)2=9.
【解析】由圓心在直線x﹣3y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對(duì)值等于圓的半徑,表示出半徑r,然后過圓心作出弦的垂線,根據(jù)垂徑定理得到垂足為弦的中點(diǎn),利用點(diǎn)到直線的距離公式求出圓心到直線y=x的距離d,由弦長的一半,圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫出圓的方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算log2.56.25+lg0.01+ln ﹣2
(2)已知tanα=﹣3,且α是第二象限的角,求sinα和cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且2csinBcosA﹣bsinC=0.
(1)求角A;
(2)若△ABC的面積為 ,b+c=5,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左頂點(diǎn)為,且橢圓與直線相切,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為橢圓C: =1(a>b>0)的左右焦點(diǎn),O是坐標(biāo)原點(diǎn),過F2作垂直于x軸的直線MF2交橢圓于M,設(shè)|MF2|=d.
(1)證明:b2=ad;
(2)若M的坐標(biāo)為( ,1),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:
①集合A={x∈Z|x=2k﹣1,k∈Z}與集合B={x∈z|x=2k+3,k∈Z}是相等集合;
②若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
③函數(shù)y= 的單調(diào)減區(qū)間是(﹣∞,0)∪(0,+∞);
④不存在實(shí)數(shù)m,使f(x)=x2+mx+1為奇函數(shù);
⑤若f(x+y)=f(x)f(y),且f(1)=2,則 + +…+ =2016.
其中正確說法的序號(hào)是(
A.①②③
B.②③④
C.①③⑤
D.①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x(x∈[﹣1,2])的值域?yàn)榧螦,g(x)=ax+2(x∈[﹣1,2])的值域?yàn)榧螧.若AB,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖為某市2017年2月28天的日空氣質(zhì)量指數(shù)折線圖.

由中國空氣質(zhì)量在線監(jiān)測(cè)分析平臺(tái)提供的空氣質(zhì)量指數(shù)標(biāo)準(zhǔn)如下:

(1)請(qǐng)根據(jù)所給的折線圖補(bǔ)全下方的頻率分布直方圖(并用鉛筆涂黑矩形區(qū)域),并估算該市2月份空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)的平均數(shù)(保留小數(shù)點(diǎn)后一位);

(2)研究人員發(fā)現(xiàn),空氣質(zhì)量指數(shù)測(cè)評(píng)中與燃燒排放的兩個(gè)項(xiàng)目存在線性相關(guān)關(guān)系,以為單位,下表給出的相關(guān)數(shù)據(jù):

關(guān)于的回歸方程,并估計(jì)當(dāng)排放量是時(shí), 的值.

(用最小二乘法求回歸方程的系數(shù)是,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),且在公共定義域{x|x∈R且x≠±1}上滿足f(x)+g(x)=
(1)求f(x)和g(x)的解析式;
(2)設(shè)h(x)=f(x)﹣g(x),求h( );
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h( )+h( )+h( )+…+h( ).

查看答案和解析>>

同步練習(xí)冊(cè)答案