在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F(xiàn)分別為AD,CD的中點(diǎn).
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.
(1);(2)
解析試題分析:(1)首先建立空間直角坐標(biāo)系,列出各對(duì)應(yīng)點(diǎn)坐標(biāo),表示對(duì)應(yīng)向量坐標(biāo),(-2,2,a),(0,1,-a),再根據(jù)空間向量數(shù)量積定義,得到2-a2=0,從而求出a的值,(2)先判斷二面角E-FD1-D為銳二面角,所以求二面角E-FD1-D的余弦值,就轉(zhuǎn)化為求兩個(gè)平面法向量夾角的余弦值的絕對(duì)值.又平面FD1D的一個(gè)法向量為,所以關(guān)鍵求平面EFD1的一個(gè)法向量n=(x,y,z),利用 n⊥,n⊥可求出x=y(tǒng)=2z,取其一個(gè)法向量為n=(2,2,1),再利用空間向量夾角公式,就可得到二面角E-FD1-D的余弦值.
試題解析:解 如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,
DC所在直線為y軸,DD1所在直線為z軸,建立坐標(biāo)系.
(1)由題意得A(2,0,0),D1(0,0,a),C1(0,2,a),F(xiàn)(0,1,0).
故 (-2,2,a), (0,1,-a). 2分
因?yàn)锳C1⊥D1F,所以,即(-2,2,a)·(0,1,-a)=0.
從而2-a2=0,又a>0,故. 5分
(2)平面FD1D的一個(gè)法向量為m=(1,0,0). 設(shè)平面EFD1的一個(gè)法向量為n=(x,y,z),
因?yàn)镋(1,0,0),a=2,故=(-1,1,0),(0,1,-2).
由n⊥,n⊥,得-x+y=0且y-2z=0,解得x=y(tǒng)=2z.
故平面EFD1的一個(gè)法向量為n=(2,2,1). 8分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/e/u8fh2.png" style="vertical-align:middle;" />,且二面角E-FD1-D的大小為銳角,
所以二面角E-FD1-D的余弦值為. 10分
考點(diǎn):利用空間向量求二面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知的直徑,點(diǎn)、為上兩點(diǎn),且,,為弧的中點(diǎn).將沿直徑折起,使兩個(gè)半圓所在平面互相垂直(如圖2).
(1)求證:;
(2)在弧上是否存在點(diǎn),使得平面?若存在,試指出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是線段EF的中點(diǎn).
求證:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖甲,△ABC是邊長(zhǎng)為6的等邊三角形,E,D分別為AB、AC靠近B、C的三等分點(diǎn),點(diǎn)G為BC邊的中點(diǎn).線段AG交線段ED于F點(diǎn),將△AED沿ED翻折,使平面AED⊥平面BCDE,連接AB、AC、AG形成如圖乙所示的幾何體。
(1)求證BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(1)證明:BC1∥平面A1CD;
(2)求二面角D-A1C-E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中,已知AB=2,AC=4,A1A=3.D是BC的中點(diǎn).
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com