【題目】數(shù)據(jù)x1,x2,x3,x4,x5的方差是2,則數(shù)據(jù)x1-1,x2-1,x3-1,x4-1,x5-1的方差是____.
【答案】2
【解析】
根據(jù)平均數(shù),方差的公式進行計算.
依題意,得(x1+x2+x3+x4+x5),
∴x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的平均數(shù)為
[(x1﹣1)+(x2﹣1)+(x3﹣1)+(x4﹣1)+(x5﹣1)]
=(x1+x2+x3+x4+x5)﹣1=1,
∵數(shù)據(jù)x1,x2,x3,x4,x5的方差
S2[(x1)2+(x2)2+(x3)2+(x4)2+(x5)2]=2,
∴數(shù)據(jù)x1﹣1、x2﹣1、x3﹣1、x4﹣1、x5﹣1的方差
S′2[(x1﹣1﹣1)2+(x2﹣1﹣1)2+(x3﹣1﹣1)2+(x4﹣1﹣1)2+(x5﹣1﹣1)2]
[(x1)2+(x2)2+(x3)2+(x4)2+(x5)2]=2.
故答案為2.
科目:高中數(shù)學 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
參數(shù)數(shù)據(jù)及公式:,,,,,,.
(1)若用線性回歸模型擬合y與x的關系,求y關于x的線性回歸方程;
(2)用對數(shù)回歸模型擬合y與x的關系,可得回歸方程:,經(jīng)計算得出線性回歸模型和對數(shù)模型的分別約為0.75和0.97,請用說明選擇哪個回歸模型更合適,并用此模型預測A超市廣告費支出為8萬元時的銷售額.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知O為坐標原點,對于函數(shù),稱向量為函數(shù)的伴隨向量,同時稱函數(shù)為向量的伴隨函數(shù).
(1)設函數(shù),試求的伴隨向量;
(2)記向量的伴隨函數(shù)為,求當且時的值;
(3)由(1)中函數(shù)的圖象(縱坐標不變)橫坐標伸長為原來的2倍,再把整個圖象向右平移個單位長度得到的圖象,已知,,問在的圖象上是否存在一點P,使得.若存在,求出P點坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù).
(1)若f(x)有兩個極值點,求實數(shù)m的取值范圍:
(2)若函數(shù)有且只有三個不同的零點,分別記為x1,x2,x3,設x1<x2<x3,且的最大值是e2,求x1x3的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的奇函數(shù)有最小正周期,且時,.
(1)求在上的解析式;
(2)判斷在上的單調性,并給予證明;
(3)當為何值時,關于方程在上有實數(shù)解?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)在區(qū)間上有最大值4,最小值為0.
(1)求函數(shù)的解析式;
(2)設,若對任意恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線(,),,是雙曲線的兩個頂點,是雙曲線上的一點,且與點在雙曲線的同一支上,關于軸的對稱點是,若直線,的斜率分別是,,且,則雙曲線的離心率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標原點O在圓M上;
(2)設圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com