精英家教網 > 高中數學 > 題目詳情
Rt△ABC的三個頂點在半徑為13的球面上,兩直角邊的長分別為6和8,則球心到平面ABC的距離是
A.5B.6C.10D.12
D
Rt△ABC的斜邊長為10,且斜邊是Rt△ABC所在截面的直徑,球心到平面ABC的距離是d=,選D
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

根據下列對幾何體結構特征的描述,說出幾何體的名稱.
一個直角梯形繞較長的底邊所在的直線旋轉一周形成的曲面所圍成的幾何體.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在長方體ABCDA1B1C1D1中,已知ABAA1a,BC=aMAD的中點。
(Ⅰ)求證:AD∥平面A1BC;
(Ⅱ)求證:平面A1MC⊥平面A1BD1
(Ⅲ)求點A到平面A1MC的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四棱錐中,側面

是正三角形,且與底面垂直,底面是邊長為2的菱形,,中點,過、、三點的平面交. 
(1)求證:;   (2)求證:中點;(3)求證:平面⊥平面.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

棱長為1的正方形的8個頂點都在球O的表面上,則球O的表面積是      分別是該正方形的棱的中點,則直線被球O截得的線段長為             .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,正棱柱中,,則異面直線所成角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,已知AD^CD, AD="10," AB=14,

角BDA=60°, 角BCD=135°求BC的長.  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,是一個無蓋正方體盒子的表面展開圖,為其上的三個點,則在正方體盒子中,(  ). 

 
 
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

5.在正三棱錐(頂點在底面的射影是底面正三角形的中心)中,,過作與分別交于的截面,則截面的周長的最小值是________

查看答案和解析>>

同步練習冊答案