如圖,是一個無蓋正方體盒子的表面展開圖,
為其上的三個點,則在正方體盒子中,
( ).
把展開圖還原可以得到:在正方體中三角形ABC是等邊三角形,所以
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
Rt△ABC的三個頂點在半徑為13的球面上,兩直角邊的長分別為6和8,則球心到平面ABC的距離是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分,第Ⅰ小題4分,第Ⅱ小題5分,第Ⅲ小題3分)
如圖,
是直角梯形,∠
=90°,
∥
,
=1,
=2,又
=1,∠
=120°,
⊥
,直線
與直線
所成的角為60°.
(Ⅰ)求證:平面
⊥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知正三棱柱ABC-A1B1C1的各條棱長都為a,P為A1B上的點,且PC⊥AB. (Ⅰ)求二面角P-AC-B的正切值; (Ⅱ)求點B到平面PAC的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱臺ABCD—A
1B
1C
1D
1中,下底ABCD是邊長為2的正方形,上底A
1B
1C
1D
1是邊長為1的正方形,側棱DD
1⊥平面ABCD,DD
1=2.
(1)求證:B
1B//平面D
1AC;
(2)求二面角B
1—AD
1—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在矩形ABCD中,AB=2,AD=1,E為CD的中點,將
沿AE折起,使平面
平面ABCE,得到幾何體
.(1)求證:
平面
;(2)求BD和平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)如圖,在梯形
中,
平面
,且
(1)求異面直線
與
間的距離;
(2)求直線
與平面
所成的角;
(3)已知
是線段
上的動點,若二面角
的
大小為
,求
AF.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在長方體ABCD-A
1B
1C
1D
1中,A
1A=AB=2,若棱AB上存在一點P,使得D
1P⊥PC,則棱AD的長的取值范圍是( 。
A.[1,] | B.(0,] | C.(0,) | D.(0,1] |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
平面六面體
中,既與
共面也與
共面的棱的條數(shù)為 ( )
查看答案和解析>>