湖北省第十四屆運(yùn)動會紀(jì)念章委托某專營店銷售,每枚進(jìn)價5元,同時每銷售一枚這種紀(jì)念章需向荊州籌委會交特許經(jīng)營管理費(fèi)2元,預(yù)計這種紀(jì)念章以每枚20元的價格銷售時該店一年可銷售2000枚,經(jīng)過市場調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷售價格在每枚20元的基礎(chǔ)上每減少一元則增加銷售400枚,而每增加一元則減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價格為元,為整數(shù).
(1)寫出該專營店一年內(nèi)銷售這種紀(jì)念章所獲利潤(元)與每枚紀(jì)念章的銷售價格(元)的函數(shù)關(guān)系式(并寫出這個函數(shù)的定義域);
(2)當(dāng)每紀(jì)念章銷售價格為多少元時,該特許專營店一年內(nèi)利潤(元)最大,并求出最大值.

(1),定義域為
(2)當(dāng)時,該特許專營店獲得的利潤最大為32400元.

解析試題分析:此題主要考查學(xué)生對函數(shù)模型在實際問題中應(yīng)用的能力.(1)在此類問題中要注意單價與銷售量之間的相關(guān)關(guān)系,同時要注意單價價格的取值范圍,必要時要進(jìn)行分段列式,再根據(jù)題意求解;(2)經(jīng)審題實際問題是求函數(shù)的最大值,由(1)可知函數(shù)是分段函數(shù),所以要在自變量的各區(qū)間中求出最大值,進(jìn)行比較,從而求出函數(shù)的最大值,再還原回實際問題的解.
試題解析:(1)依題意
,
定義域為           6分
(2)∵,]
∴當(dāng)時,則,(元)
當(dāng)時,則或24,(元)
綜上:當(dāng)時,該特許專營店獲得的利潤最大為32400元.    12分
考點:1.實際問題中的函數(shù)建模;2.分段函數(shù)的最值;3.二次函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長為20m的鐵絲網(wǎng),一邊靠墻,圍成三個大小相等、緊緊相連的長方形,那么長方形長、寬、各為多少時,三個長方形的面積和最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若不等式對一切恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時的解析式為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側(cè).設(shè),的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公園準(zhǔn)備建一個摩天輪,摩天輪的外圍是一個周長為米的圓.在這個圓上安裝座位,且每個座位和圓心處的支點都有一根直的鋼管相連.經(jīng)預(yù)算,摩天輪上的每個座位與支點相連的鋼管的費(fèi)用為元/根,且當(dāng)兩相鄰的座位之間的圓弧長為米時,相鄰兩座位之間的鋼管和其中一個座位的總費(fèi)用為元.假設(shè)座位等距離分布,且至少有兩個座位,所有座位都視為點,且不考慮其他因素,記摩天輪的總造價為元.
(Ⅰ)試寫出關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(Ⅱ)當(dāng)米時,試確定座位的個數(shù),使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實數(shù),函數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克)與時間(小時)成正比;藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:

(1)求從藥物釋放開始,每立方米空氣中的含藥量(毫克)與時間(小時)之間的函數(shù)關(guān)系式;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)教室.那從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=x2x+13,實數(shù)a滿足|xa|<1,求證:|f(x)f(a)|<2(|a|+1).

查看答案和解析>>

同步練習(xí)冊答案