解:(1)取PD的中點F,連結(jié)EF,AF,
∵E為PC中點,∴EF∥CD,且
,
在梯形ABCD中,AB∥CD,AB=1,∴EF∥AB,EF=AB,
四邊形ABEF為平行四邊形,∴BE∥AF,
∵BE?平面PAD,AF?平面PAD,
∴BE∥平面PAD.
(2)取CD中點M,連結(jié)BM,可知△BMC為直角三角形且BM=MC=1,∴
,
在△ABD中,可知
,∴CD
2=BD
2+BC
2,∴BC⊥BD.
又由PD⊥平面ABCD,可得PD⊥BC,
又PD∩BD=D,
∴BC⊥平面PBD.
(3)∵PD⊥底面ABCD,∴∠PBD是斜線PB與平面ABCD所成的線面角.
可知∠PBD=45°,由(2)可知:BD=
.
∴PD=BD=
.
分析:(1)利用三角形的中位線定理EF∥CD且
,由平行四邊形的判定可得平行四邊形ABEF,由性質(zhì)定理可得BE∥AF,再利用線面平行的判定定理即可證明;
(2)取CD中點M,連結(jié)BM,則四邊形ABMD為正方形,可得BD,BC的長,利用勾股定理的逆定理即可判斷BC⊥BD,再利用線面垂直的性質(zhì)定理即可得出PD⊥BC,再利用線面垂直的判定定理即可證明;
(3)利用線面角的定義及等腰直角三角形的性質(zhì)即可得出.
點評:熟練掌握三角形的中位線定理、平行四邊形的判定和性質(zhì)定理、線面平行的判定定理、正方形的判定與性質(zhì)、勾股定理的逆定理、線面垂直的判定定理和性質(zhì)定理、線面角的定義及等腰直角三角形的性質(zhì)是解題的關鍵.