【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長為20米的正方形內(nèi)種植經(jīng)紅色郁金香,在正方形的剩余部分(即四個直角三角形內(nèi))種植黃色郁金香.現(xiàn)要在以為邊長的矩形內(nèi)種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設(shè)米.

1)求之間的函數(shù)關(guān)系式;

2)求的最大值.

【答案】(1),其中(2)

【解析】

1)利用已知條件將黃色郁金香和綠色草坪的面積表示出來,然后根據(jù)面積相等,得到之間的函數(shù)關(guān)系式,注意定義域;

2)根據(jù),用換元法并構(gòu)造新函數(shù)完成最大值的求解.

解:(1)在中,,則,

同理,在中,,則,

所以

因為在矩形內(nèi)種植與黃花面積相等的草坪,

設(shè)矩形的面積為,則,

所以

所以,其中

2)令,則

因為,所以

所以,因為上單調(diào)遞增,

所以,

答:的最大值為米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;

(Ⅲ)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知函數(shù),試判斷函數(shù)的單調(diào)性,并說明理由;

2)已知函數(shù).

i)判斷的奇偶性,并說明理由;

ii)求證:對于任意的x ,yR,且x≠±1 ,y≠±1,xy≠1都有.

3)由⑵可知滿足①式的函數(shù)是存在的,如.問:滿足①的函數(shù)是否存在無窮多個?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為常數(shù),a0,函數(shù)

1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;

2a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);

,,且在區(qū)間[1,2]上是增函數(shù),求由所有點形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)R).

1)求函數(shù)R上的最小值;

2)若不等式上恒成立,求的取值范圍;

3)若方程上有四個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖B,C分別是海岸線上的兩個城市兩城市間由筆直的海濱公路相連,BC之間的距離為100km,海島A在城市B的正東方50從海島A到城市C,先乘船按北偏西θ角(,其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C已知船速為25km/h,車速為75km/h.

(1)試建立由A經(jīng)PC所用時間與的函數(shù)解析式;

(2)試確定登陸點P的位置,使所用時間最少,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面,平面平面.

(Ⅰ)證明:平面

(Ⅱ)若底面為矩形,,的中點,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ),

設(shè) ,則.

, ,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵

∴當(dāng)時, ,當(dāng)時, ,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

,

.

設(shè),

.

∵當(dāng)時, ,∴上單調(diào)遞增.

又∵,∴當(dāng)時, ;當(dāng)時, .

①當(dāng)時, ,即,這時, ;

②當(dāng)時, ,即,這時, .

綜上, 上的最大值為:當(dāng)時,

當(dāng)時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案