將長度為1的鐵絲分成兩段,分別圍成一個正方形與一個圓形,則當它們的面積之積最大時,正方形與圓的周長之比為(  )
分析:正確理解題意,充分應用正方形的知識和圓的知識,表示出兩種圖形的面積.構(gòu)造目標函數(shù)后結(jié)合目標函數(shù)的特點--一元二次函數(shù),利用二次函數(shù)的性質(zhì)求最值.
解答:解:設正方形周長為x,則圓的周長為1-x,半徑r=
1-x

∴S=(
x
4
2=
x2
16
,S=π•
(1-x)2
4π2

∴S×S=
x2(1-x)2
64π2
1
16×64×π2
(0<x<1).
∴當且僅當x=
1
2
時有最小值.
此時正方形與圓的周長之比為1:1
故選A.
點評:本題充分考查了正方形和圓的知識,目標函數(shù)的思想還有一元二次函數(shù)求最值的知識.在解答過程當中要時刻注意定義域優(yōu)先的原則.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將長度為1的鐵絲分成兩段,分別圍成一個正方形和一個圓形,要使正方形與圓的面積之和最小,正方形的周長應為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長度為1的鐵絲分成兩段,分別圍成一個正方形和一個圓形.要使正方形與圓的面積之和最小,正方形的周長應為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:2.10 函數(shù)的最值(解析版) 題型:解答題

將長度為1的鐵絲分成兩段,分別圍成一個正方形和一個圓形,要使正方形與圓的面積之和最小,正方形的周長應為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修1單調(diào)性與最大(小)值練習卷(二)(解析版) 題型:填空題

將長度為1的鐵絲分成兩段,分別圍成一個正方形和一個圓形.要使正方形和圓的面積之和最小,則正方形的周長應為__________.

 

查看答案和解析>>

同步練習冊答案