精英家教網 > 高中數學 > 題目詳情

已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

(1)(2)

解析試題分析:(1),,
所以,所求橢圓方程為 
(2)設
由題意可知直線AB的斜率存在,設過A,B的直線方程為
則由  得
由M分有向線段所成的比為2,得,……8分
,  
得 
解得,  
所以,
考點:橢圓方程與性質及直線與橢圓相交問題
點評:直線與圓錐曲線相交時,常聯立方程組,整理為關于x的二次方程,利用韋達定理找到根與系數的關系,通過設而不求的方法轉化所求問題,題目中的向量關系常轉化為坐標表示,這樣即可與交點A,B坐標發(fā)生聯系

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,直線過點,,且與橢圓相切于點.(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點的直線與橢圓相交于不同的兩點,使得?若存在,試求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標系xOy中,已知點P,曲線C的參數方程為φ為參數)。以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(1)判斷點P與直線l的位置關系,說明理由;
(2)設直線l與直線C的兩個交點為A、B,求的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設直線與拋物線交于兩點.
(1)求線段的長;(2)若拋物線的焦點為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

圓C的圓心在y軸上,且與兩直線l1;l2均相切.
(I)求圓C的方程;
(II)過拋物線上一點M,作圓C的一條切線ME,切點為E,且的最小值為4,求此拋物線準線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設橢圓的左、右焦點分別為,已知橢圓上的任意一點,滿足,過作垂直于橢圓長軸的弦長為3.

(1)求橢圓的方程;
(2)若過的直線交橢圓于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

選修4-4:坐標系與參數方程
在直角坐標系中,直線L的方程為x-y+4=0,曲線C的參數方程為
(1)求曲線C的普通方程;
(2)設點Q是曲線C上的一個動點,求它到直線L的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;
(2)當實數取何值時,?并求出此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分為12分)
已知橢圓中心在原點,焦點在y軸上,焦距為4,離心率為
(I)求橢圓方程;
(II)設橢圓在y軸的正半軸上的焦點為M,又點A和點B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

查看答案和解析>>

同步練習冊答案