提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0千米/小時(shí);當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí)).

(Ⅰ);(Ⅱ)當(dāng)車(chē)流密度為100輛/千米時(shí),車(chē)流量可以達(dá)到最大,最大值約為3333輛/小時(shí).

解析試題分析:(Ⅰ)根據(jù)題意, :當(dāng)時(shí),,當(dāng)時(shí),是一次函數(shù), 可設(shè)為,將代入求出即可;(Ⅱ)分段函數(shù)最值分段求, 當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),其最大值為,當(dāng)時(shí),是二次函數(shù),利用二次函數(shù)性質(zhì),求出最大值,然后比較,誰(shuí)最大為誰(shuí).
試題解析:(Ⅰ)由題意:當(dāng)時(shí),;當(dāng)時(shí),設(shè),顯然是減函數(shù),由已知得,解得,故函數(shù)的表達(dá)式為
(Ⅱ)依題意并由(Ⅰ)可得,當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),其最大值為;當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.所以,當(dāng)時(shí),在區(qū)間上取得最大值
綜上,當(dāng)時(shí),在區(qū)間上取得最大值
即當(dāng)車(chē)流密度為100輛/千米時(shí),車(chē)流量可以達(dá)到最大,最大值約為3333輛/小時(shí).
考點(diǎn):1、求函數(shù)解析式, 2、求二次函數(shù)最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(1)求的值;
(2)若方程內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對(duì)數(shù)的底數(shù));(3)令,若的圖象與軸交于(其中),的中點(diǎn)為,求證:處的導(dǎo)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在半徑為、圓心角為的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)上,點(diǎn)上,設(shè)矩形的面積為,

(Ⅰ)按下列要求求出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式;
(Ⅱ)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)某沿海地區(qū)養(yǎng)殖的一種特色海鮮上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測(cè)上市初期和后期會(huì)因供應(yīng)不足使價(jià)格呈持續(xù)上漲態(tài)勢(shì),而中期又將出現(xiàn)供大于求,使價(jià)格連續(xù)下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且
(1)為準(zhǔn)確研究其價(jià)格走勢(shì),應(yīng)選哪種價(jià)格模擬函數(shù)(不必說(shuō)明理由)
(2)若,,求出所選函數(shù)的解析式(注:函數(shù)定義域是.其中表示8月1日,表示9月1日,…,以此類(lèi)推);
(3)在(2)的條件下研究下面課題:為保證養(yǎng)殖戶的經(jīng)濟(jì)效益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷(xiāo),請(qǐng)你預(yù)測(cè)該海鮮將在哪幾個(gè)月份內(nèi)價(jià)格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是常數(shù))在區(qū)間上有
(1)求的值;
(2)若當(dāng)時(shí),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(Ⅰ)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在一個(gè)周期內(nèi)的部分對(duì)應(yīng)值如下表:















(I)求的解析式;
(II)設(shè)函數(shù),求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)和點(diǎn),過(guò)點(diǎn)作曲線的兩條切線、,切點(diǎn)分別為、
(Ⅰ)設(shè),試求函數(shù)的表達(dá)式;
(Ⅱ)是否存在,使得三點(diǎn)共線.若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)在(Ⅰ)的條件下,若對(duì)任意的正整數(shù),在區(qū)間內(nèi)總存在個(gè)實(shí)數(shù),,使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于在區(qū)間 [ m,n ] 上有意義的兩個(gè)函數(shù),如果對(duì)任意,均有,則稱在 [ m,n ] 上是友好的,否則稱在 [ m,n ]是不友好的.現(xiàn)有兩個(gè)函數(shù)(a > 0且),給定區(qū)間
(1)若在給定區(qū)間上都有意義,求a的取值范圍;
(2)討論在給定區(qū)間上是否友好.

查看答案和解析>>

同步練習(xí)冊(cè)答案