已知橢圓過點(diǎn),離心率,
(1)求橢圓C的方程;
(2)若過點(diǎn)的直線與橢圓C交于兩點(diǎn),且以為直徑的圓過原點(diǎn),試求直線的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆四川省高二5月月考考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線和與橢圓的交點(diǎn)分別為、和、,為坐標(biāo)原點(diǎn).設(shè)直線、的斜率分別為、.
(i)證明:;
(ii)問直線上是否存在點(diǎn),使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二第二次月考數(shù)學(xué)試卷 題型:解答題
(文科做)(本小題滿分16分)
已知橢圓過點(diǎn),離心率為,圓的圓心為坐標(biāo)原點(diǎn),直徑為橢圓的短軸,圓的方程為.過圓上任一點(diǎn)作圓的切線,切點(diǎn)為.
(1)求橢圓的方程;
(2)若直線與圓的另一交點(diǎn)為,當(dāng)弦最大時,求直線的直線方程;
(3)求的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆安徽省毫州市高二上學(xué)期質(zhì)量檢測理科數(shù)學(xué) 題型:解答題
如圖,已知橢圓過點(diǎn).,離心率為,左、右焦點(diǎn)分別為、.點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線和與橢圓的交點(diǎn)分別為、和、,為坐標(biāo)原點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線、的斜線分別為、. 證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分15分)
如圖,已知橢圓過點(diǎn),離心率為,左、右焦點(diǎn)分別為、。點(diǎn)為直線上且不在軸上的任意一點(diǎn),直線和與橢圓的交點(diǎn)分別為、和、,為坐標(biāo)原點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線、的斜線分別為、.
(i)證明:;
(ii)問直線上是否存在點(diǎn),使得直線、、、的斜率、、、滿足?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com