如圖,已知圓上一點(diǎn)A(1,0)按逆時(shí)針?lè)较蜃鰟蛩賵A周運(yùn)動(dòng),1秒鐘時(shí)間轉(zhuǎn)過(guò)(0<≤π)角,經(jīng)過(guò)2秒鐘到達(dá)第三象限,經(jīng)過(guò)14秒鐘又轉(zhuǎn)到與最初位置重合的位置,求角的弧度數(shù).

答案:
解析:

  答:角的弧度數(shù)是

  解:因?yàn)?<≤π,可得0<2≤2π.

  又因?yàn)?在第三象限,所以π<2

  由14=2kπ(k∈Z),可得2(k∈Z),

  所以π<,即<k<

  所以k=4或5,即


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓G:x2+y2-2x-
2
y=0
經(jīng)過(guò)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過(guò)橢圓外一點(diǎn)(m,0)(ma)且傾斜角為
5
6
π
的直線l交橢圓于C,D兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓C的方程為:x2+y2-6x-8y+21=0,平面上有A(1,0)和B(-1,0)兩點(diǎn).
(I)在圓上求一點(diǎn)Q,使△ABQ的面積最大,并求出最大面積;
(II)在圓上求一點(diǎn)P,使|AP|2+|BP|2取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓O′:(x+2)2+y2=8及點(diǎn)A(2,0),在圓O'上任取一點(diǎn)A′,連AA′并作AA′的中垂線l,設(shè)l與直線O′A′交于點(diǎn)P,若點(diǎn)A′取遍圓O′上的點(diǎn).
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若過(guò)點(diǎn)O′的直線m與曲線C交于M、N兩點(diǎn),且|AM|=|AN|,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1-1-4,已知圓上一點(diǎn)A(1,0)按逆時(shí)針?lè)较蜃鰟蛩賵A周運(yùn)動(dòng),1秒鐘時(shí)間轉(zhuǎn)過(guò)θ(0<θ≤π)角,經(jīng)過(guò)2秒鐘到達(dá)第三象限,經(jīng)過(guò)14秒鐘又轉(zhuǎn)到與最初位置重合的位置,求θ角的弧度數(shù).

圖1-1-4

查看答案和解析>>

同步練習(xí)冊(cè)答案