設(shè)橢圓的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,離心率為
,在
軸負(fù)半軸上有一點(diǎn)
,且
(Ⅰ)若過(guò)三點(diǎn)的圓恰好與直線
相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過(guò)右焦點(diǎn)作斜率為
的直線
與橢圓C交于
兩點(diǎn),在
軸上是否存在點(diǎn)
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;否則,請(qǐng)說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸正半軸的拋物線上有一點(diǎn)
,
點(diǎn)到拋物線焦點(diǎn)的距離為1.(1)求該拋物線的方程;(2)設(shè)
為拋物線上的一個(gè)定點(diǎn),過(guò)
作拋物線的兩條互相垂直的弦
,
,求證:
恒過(guò)定點(diǎn)
.(3)直線
與拋物線交于
,
兩點(diǎn),在拋物線上是否存在點(diǎn)
,使得△
為以
為斜邊的直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題分12分)
如圖,斜率為1的直線過(guò)拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, 將直線
按向量
平移得到直線
,
為
上的動(dòng)點(diǎn),
為拋物線弧
上的動(dòng)點(diǎn).
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)
如圖,拋物線的焦點(diǎn)到準(zhǔn)線的距離與橢圓
的長(zhǎng)半軸相等,設(shè)橢圓的右頂點(diǎn)為
在第一象限的交點(diǎn)為
為坐標(biāo)原點(diǎn),且
的面積為
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作直線
交
于
兩點(diǎn),射線
分別交
于
兩點(diǎn).
(I)求證:點(diǎn)在以
為直徑的圓的內(nèi)部;
(II)記的面積分別為
,問(wèn)是否存在直線
,使得
?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的方程為它的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,離心率
過(guò)橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線
交橢圓于A、B兩點(diǎn).(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分15分) 設(shè)拋物線C1:x2=4y的焦點(diǎn)為F,曲線C2與C1關(guān)于原點(diǎn)對(duì)稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點(diǎn)P(異于原點(diǎn)),過(guò)點(diǎn)P作C1的兩條切線PA,PB,切點(diǎn)A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項(xiàng)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C:(a〉b>0)的左焦點(diǎn)為
,橢圓過(guò)點(diǎn)P(
)
(1)求橢圓C的方程;
(2)已知點(diǎn)D(l,0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,曲線是以原點(diǎn)O為中心、
為焦點(diǎn)的橢圓的一部分,曲線
是以O(shè)為頂點(diǎn)、
為焦點(diǎn)的拋物線的一部分,A是曲線
和
的交點(diǎn)
且
為鈍角.
(1)求曲線和
的方程;
(2)過(guò)作一條與
軸不垂直的直線,分別與曲線
依次交于B、C、D、E四點(diǎn),若G為CD中點(diǎn)、H為BE中點(diǎn),問(wèn)
是否為定值?若是求出定值;若不是說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn).求證:(1)x1x2為定值;(2)+
為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com