精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=sinxcosx+2,記函數f(x)的最小正周期為β向量a=(2,cosα),b=(1,tan(α))(0<α<),a·b

(1)f(x)在區(qū)間上的最值

(2)的值

【答案】(2)最大值是4,最小值是2.(2)

【解析】試題分析:

(1)把函數化為一個角的一個三角函數形式,再利用正弦函數性質得最值;

(2)由三角函數周期求出,再由平面向量數量積的坐標運算公式求出,化簡待求式,最后由同角關系式可得結論.

試題解析:

(1)f(x)=sinxcosx+2=2sin(x)+2,

x∈[,],∴x∈[,π],

f(x)的最大值是4,最小值是2.

(2)β=2π,

a·b=2+cosαtan(α+π)=2+sinα

sinα,又0<α<

=2cosα=2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某項科研活動共進行了5次試驗,其數據如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)從5次特征量的試驗數據中隨機地抽取兩個數據,求至少有一個大于600的概率;

(2)求特征量關于的線性回歸方程;并預測當特征量為570時特征量的值.

(附:回歸直線的斜率和截距的最小二乘法估計公式分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點P(4,5)關于直線l的對稱點坐標;

(2)直線l1yx-2關于直線l的對稱直線的方程;

(3)直線l關于點A(3,2)的對稱直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 , 分別是其左、右焦點,以線段為直徑的圓與橢圓有且僅有兩個交點.

(1)求橢圓的方程;

(2)設過點且不與坐標軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,點橫坐標的取值范圍是,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解甲、乙兩廠產品的質量,從兩廠生產的產品中分別隨機抽取各10件樣品,測量產品中某種元素的含量(單位:毫克),如圖是測量數據的莖葉圖:

規(guī)定:當產品中的此種元素含量不小于16毫克時,該產品為優(yōu)等品.

(1)從乙廠抽出的上述10件樣品中,隨機抽取3件,求抽到的3件樣品中優(yōu)等品數的分布列及其數學期望

(2)從甲廠的10件樣品中有放回地逐個隨機抽取3件,也從乙廠的10件樣品中有放回地逐個隨機抽取3件,求抽到的優(yōu)等品數甲廠恰比乙廠多2件的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知中心在原點的橢圓的兩焦點分別為雙曲線的頂點,直線與橢圓交于兩點,且,點是橢圓上異于、的任意一點,直線外的點滿足, . 

(1)求點的軌跡方程;

(2)試確定點的坐標,使得的面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】423日是世界讀書日,惠州市某中學在此期間開展了一系列的讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為讀書迷,低于60分鐘的學生稱為非讀書迷

)根據已知條件完成下面2×2列聯表,并據此判斷是否有99%的把握認為讀書迷與性別有關?

)將頻率視為概率,現在從該校大量學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中讀書迷的人數為,若每次抽取的結果是相互獨立的,求的分布列、數學期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中, 平面,底面為直角梯形, , ,且為線段上的一動點.

(Ⅰ)若為線段的中點,求證: 平面;

(Ⅱ)當直線與平面所成角小于,求長度的取值范圍.

查看答案和解析>>

同步練習冊答案