【題目】(2015·湖南)如下圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐F-AEC的體積.
【答案】(1)見解析(2)
【解析】(1)證明:如圖,因為三棱柱ABC-A1B1C1是直三棱柱,所以AE⊥BB1,
又E是正三角形ABC的邊BC的中點,所以AE⊥BC,因此AE⊥平面B1BCC1,又AE平面AEF,所以平面AEF⊥平面B1BCC1.
(2)設(shè)AB的中點為D,連接A1D,CD,因為△ABC是正三角形,所以CD⊥AB,又三棱柱ABC-A1B1C1是直三棱柱,所以CD⊥AA1,因此CD⊥平面A1ABB1,于是∠CA1D為直線A1C與平面A1ABB1所成的角,由題設(shè)知∠CA1D=45°,
所以A1D=CD=AB=,在Rt△AA1D中,AA1=,所以FC=AA1=,故三棱錐F-AEC的體積V=
S△AEC×FC=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3與a5的等比中項為2.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2an , 數(shù)列{bn}的前n項和為Sn , 當(dāng) 最大時,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,已知,(n∈N*)
(1)求數(shù)列的通項公式
(2)若(λ為非零常數(shù)),問是否存在整數(shù)λ使得對任意n∈N*都有?若存在,求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線與的圖象的相鄰兩個交點的橫坐標(biāo)分別是和,現(xiàn)有如下命題:
①該函數(shù)在上的值域是;
②在上,當(dāng)且僅當(dāng)時函數(shù)取最大值;
③該函數(shù)的最小正周期可以是;
④的圖象可能過原點.
其中的真命題有__________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2﹣7x+10<0,q:x2﹣4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q為真,求x的取值范圍;
(2)若¬q是¬p的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校進(jìn)行體驗,現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機抽取50人進(jìn)行統(tǒng)計(已知這50個身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=﹣sin2x+ 的圖象,只需將y=sinxcosx的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,向量 =(a,c), =(1﹣2cosA,2cosC﹣1),
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若 ,且角A是△ABC中最大內(nèi)角,求角A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某城市居民用水量的情況,我們獲得100位居民某年的月均用水量(單位:噸)通過對數(shù)據(jù)的處理,我們獲得了該100位居民月均用水量的頻率分布表,并繪制了頻率分布直方圖(部分?jǐn)?shù)據(jù)隱藏)
100位居民月均用水量的頻率分布表
組號 | 分組 | 頻數(shù) | 頻率 |
1 | 4 | 0.04 | |
2 | 0.08 | ||
3 | 15 | ||
4 | 22 | ||
5 | |||
6 | 14 | 0.14 | |
7 | 6 | ||
8 | 4 | 0.04 | |
9 | 0.02 | ||
合 計 | 100 |
(1)確定表中與的值;
(2)求頻率分布直方圖中左數(shù)第4個矩形的高度;
(3)在頻率分布直方圖中畫出頻率分布折線圖;
(4)我們想得到總體密度曲線,請回答我們應(yīng)該怎么做?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com