【題目】已知函數(shù)

(1)若,求的值;

(2)設(shè)為整數(shù),且對(duì)于任意正整數(shù), ,求的最小值.

【答案】(1);(2)3

【解析】試題分析:(1)求導(dǎo)數(shù),根據(jù)的符號(hào)判斷函數(shù)的單調(diào)性,根據(jù)的值,解題時(shí)注意這一條件的運(yùn)用;(2)利用(1)的結(jié)論,當(dāng)時(shí), ,

,進(jìn)而,此時(shí)令,可得,所以,最后在此結(jié)論的基礎(chǔ)上,可以得到,故可求出。

試題解析:

(1)因?yàn)?/span>,

所以,且

①當(dāng)a≤0時(shí),f′(x)>0恒成立,f(x)在(0,+∞)上單調(diào)遞增,

所以在(0,1)上f(x)<0, f(x)≥0矛盾;

②當(dāng)a>0時(shí),令f′(x)=0,解得x=a,

所以當(dāng)時(shí), 單調(diào)遞減;當(dāng)時(shí), 單調(diào)遞增。

所以當(dāng)時(shí), 有最小值,且,

又因?yàn)?/span>,

所以

解得a=1;

(2)由(1)可知當(dāng)a=1時(shí)f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,

所以ln(x+1)≤x,當(dāng)且僅當(dāng)x=0時(shí)等號(hào)成立,

,

所以

所以

因?yàn)?/span>,

所以

,

同時(shí)當(dāng)n≥3時(shí),

因?yàn)?/span>m為整數(shù),且對(duì)于任意正整數(shù)n,

所以,

m的最小值為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣x+c(c∈R)的一個(gè)零點(diǎn)為1. (Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)設(shè) ,若g(t)=2,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時(shí),關(guān)于的不等式恒成立;

(Ⅲ)若正實(shí)數(shù)滿足,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物中心為了了解顧客使用新推出的某購(gòu)物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購(gòu)物中心購(gòu)物的顧客年齡,并整理后畫出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.

(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;

(2) 擬利用分層抽樣從年齡在的顧客中選取人召開(kāi)一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , g(x)=ln 的圖象分別與直線y=m交于A,B兩點(diǎn),則|AB|的最小值為(
A.2
B.2+ln2
C.e2
D.2e﹣ln

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c在x=1處取得極值﹣3﹣c.
(1)試求實(shí)數(shù)a,b的值;
(2)試求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù)中,表示同一函數(shù)的是(
A.f(x)=x0與g(x)=1
B.f(x)=x與g(x)=
C.f(x)=x2﹣1與g(x)=x2+1
D.f(x)=|x|與g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)f(x)=sin (2x﹣ )(x∈R),給出下列三個(gè)結(jié)論: ①對(duì)于任意的x∈R,都有f(x)=cos (2x﹣ );
②對(duì)于任意的x∈in R,都有f(x+ )=f(x﹣ );
③對(duì)于任意的x∈R,都有f( ﹣x)=f( +x).
其中,全部正確結(jié)論的序號(hào)是

查看答案和解析>>

同步練習(xí)冊(cè)答案