【題目】在正方體中,,以為球心,為半徑的球與棱,分別交于,兩點(diǎn),則二面角的正切值為( )
A. B. C. D.
【答案】B
【解析】分析:設(shè)棱長(zhǎng)為4,果然年紀(jì)勾股定理計(jì)算AF,AG可得△AFG和△EFG均為等腰三角形,作出兩三角形的底邊上的高AM,EM,則∠AME為所求角.
詳解:設(shè)正方體棱長(zhǎng)為4,則AE=1,EB=3,∴EF=EG=EC==5,
∴AF==2,DE==,
∴A1F==2,DG==2.
∴D1F=D1G=4﹣2,F(xiàn)G=D1F=4﹣4,
∴FM=FG=2﹣2,
取FG的中點(diǎn)M,連接AM,EM,
∵△AFG和△EFG均為等腰三角形.
∴AM⊥FG,EM⊥FG,
∴∠AME為二面角A﹣FG﹣E的平面角,
∵AM==2+2,
∴tan∠AME===.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)是城市慢行系統(tǒng)的一種創(chuàng)新模式,對(duì)于解決民眾出行“最后一公里”的問(wèn)題特別見(jiàn)效,由于停取方便、租用價(jià)格低廉,各色共享單車(chē)受到人們的熱捧.某自行車(chē)廠(chǎng)為共享單車(chē)公司生產(chǎn)新樣式的單車(chē),已知生產(chǎn)新樣式單車(chē)的固定成本為20 000元,每生產(chǎn)一輛新樣式單車(chē)需要增加投入100元.根據(jù)初步測(cè)算,自行車(chē)廠(chǎng)的總收益(單位:元)滿(mǎn)足分段函數(shù) 其中x是新樣式單車(chē)的月產(chǎn)量(單位:輛),利潤(rùn)=總收益-總成本.
(1)試將自行車(chē)廠(chǎng)的利潤(rùn)y元表示為月產(chǎn)量x的函數(shù);
(2)當(dāng)月產(chǎn)量為多少件時(shí)自行車(chē)廠(chǎng)的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)習(xí)小組在研究性學(xué)習(xí)中,對(duì)晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進(jìn)行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2)
根據(jù)上述數(shù)據(jù)作出散點(diǎn)圖,可知綠豆種子出芽數(shù) (顆)和溫差具有線(xiàn)性相關(guān)關(guān)系。
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計(jì)4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)。
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是等邊三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,直線(xiàn)與橢圓交于,兩點(diǎn),與軸,軸分別交于點(diǎn),,且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),的延長(zhǎng)線(xiàn)交橢圓于點(diǎn),過(guò)點(diǎn),分別作軸的垂線(xiàn),垂足分別為,.
(1)求橢圓的方程;
(2)是否存在直線(xiàn),使得點(diǎn)平分線(xiàn)段?若存在,求出直線(xiàn)的方程,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn)且與此拋物線(xiàn)交于,兩點(diǎn),,直線(xiàn)與拋物線(xiàn)交于,兩點(diǎn),且,兩點(diǎn)在軸的兩側(cè).
(1)證明:為定值;
(2)求直線(xiàn)的斜率的取值范圍;
(3)若(為坐標(biāo)原點(diǎn)),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實(shí)驗(yàn)室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.
(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程.
(3)由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,據(jù)此說(shuō)明(2)中所得線(xiàn)性回歸方程是否可靠?并估計(jì)當(dāng)溫差為9 ℃時(shí),100顆種子中的發(fā)芽數(shù).
附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,,、分別是、上的點(diǎn),且,將沿折起到的位置,使,如圖2.
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)長(zhǎng)為多少時(shí),異面直線(xiàn),所成的角最小,并求出此時(shí)所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的奇函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com