【題目】某單位擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).
(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

【答案】
(1)解:由題可知30=θ(10+x)+2(10﹣x),所以θ= ,x∈(0,10)
(2)解:花壇的面積為 θ(102﹣x2)=(5+x)(10﹣x)=﹣x2+5x+50(0<x<10),

裝飾總費(fèi)用為9θ(10+x)+8(10﹣x)=170+10x,

所以花壇的面積與裝飾總費(fèi)用之比為y= =﹣

令t=17+x,t∈(17,27)則y= (t+ )≤ = ,

當(dāng)且僅當(dāng)t=18時(shí)取等號(hào),此時(shí)x=1,θ=

(若利用雙勾函數(shù)單調(diào)性求最值的,則同等標(biāo)準(zhǔn)給分,但須說明單調(diào)性.)

故當(dāng)x=1時(shí),花壇的面積與裝飾總費(fèi)用之比最大


【解析】(1)根據(jù)扇形的周長(zhǎng)公式進(jìn)行求解即可.(2)結(jié)合花壇的面積公式,結(jié)合費(fèi)用之間的關(guān)系進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若 ,△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 ,其中 ,k∈R.
(1)當(dāng)k為何值時(shí),有
(2)若向量 的夾角為鈍角,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn= (3n+5),正項(xiàng)等比數(shù)列{bn}中,b2=4,b1b7=256.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=anbn , 求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且btanB=
(1)求角B的值;
(2)若△ABC的面積為 ,a+c=8,求邊b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)每一噸產(chǎn)品所需的勞動(dòng)力、煤和電耗如表:

產(chǎn)品品種

勞動(dòng)力(個(gè))

煤(噸)

電(千瓦)

A產(chǎn)品

3

9

4

B產(chǎn)品

10

4

5

已知生產(chǎn)每噸A產(chǎn)品的利潤(rùn)是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤(rùn)是12萬元,現(xiàn)因條件限制,該企業(yè)僅有勞動(dòng)力300個(gè),煤360噸,并且供電局只能供電200千瓦,試問該企業(yè)如何安排生產(chǎn),才能獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinxcos2x,下列結(jié)論正確的是(
A.y=f(x)的圖象關(guān)于 對(duì)稱
B.y=f(x)的圖象關(guān)于 對(duì)稱
C.y=f(x)的圖象關(guān)于y軸對(duì)稱
D.y=f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值為(

A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,已知舊墻的維修費(fèi)用為45元/m,新墻的造價(jià)為180元/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:m),修建此矩形場(chǎng)地圍墻的總費(fèi)用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案