【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),,求的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),分和兩種情況討論,分析導(dǎo)數(shù)的符號(hào)變化,即可求出函數(shù)的單調(diào)區(qū)間;
(2)問(wèn)題變形為,令,由題意得出,根據(jù)函數(shù)的單調(diào)性確定的范圍即可.
(1),定義域?yàn)?/span>且.
①當(dāng)時(shí),則,則函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),由,得,得.
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
此時(shí),函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;
當(dāng)時(shí),函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;
(2)變形為,
令,定義域?yàn)?/span>,且,
.
①當(dāng)時(shí),對(duì)任意的,,函數(shù)在區(qū)間上為增函數(shù),
此時(shí),,合乎題意;
②當(dāng)時(shí),則函數(shù)在上的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(i)當(dāng)時(shí),即當(dāng)時(shí),則函數(shù)在區(qū)間上為增函數(shù),
此時(shí),則函數(shù)在區(qū)間上為增函數(shù).
此時(shí),,合乎題意;
(ii)當(dāng)時(shí),即當(dāng)時(shí),則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以,,
又,所以,函數(shù)在區(qū)間上單調(diào)遞減,
當(dāng)時(shí),,不合乎題意.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最大值為3.
(1)求橢圓的方程;
(2)若過(guò)橢圓的右焦點(diǎn)作傾斜角不為零的直線與橢圓交于兩點(diǎn),設(shè)線段的垂直平分線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的坐標(biāo)方程為,若直線與曲線相切.
(1)求曲線的極坐標(biāo)方程;
(2)在曲線上取兩點(diǎn)、于原點(diǎn)構(gòu)成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量方法,具體如下;第一階梯,每戶居民每月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶居民用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸,為了了解全是居民月用水量的分布情況,通過(guò)抽樣獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照(全市居民月用水量均不超過(guò)16噸)分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)的坐標(biāo)分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)直線方程為,直線方程為,直線交于,點(diǎn),關(guān)于軸對(duì)稱,直線與軸相交于點(diǎn).若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將所有平面向量組成的集合記作,是從到的對(duì)應(yīng)關(guān)系,記作或,其中、、、都是實(shí)數(shù),定義對(duì)應(yīng)關(guān)系的模為:在的條件下的最大值記作,若存在非零向量,及實(shí)數(shù)使得,則稱為的一個(gè)特殊值;
(1)若,求;
(2)如果,計(jì)算的特征值,并求相應(yīng)的;
(3)若,要使有唯一的特征值,實(shí)數(shù)、、、應(yīng)滿足什么條件?試找出一個(gè)對(duì)應(yīng)關(guān)系,同時(shí)滿足以下兩個(gè)條件:①有唯一的特征值,②,并驗(yàn)證滿足這兩個(gè)條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國(guó)家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(jià)(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè)子,求“好數(shù)據(jù)”個(gè)數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:線性回歸方程中的估計(jì)值分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有、兩個(gè)自習(xí)教室,甲、乙、丙名學(xué)生各自隨機(jī)選擇其中一個(gè)教室自習(xí),則甲、乙兩人不在同一教室上自習(xí)的概率為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com