【題目】現(xiàn)有10名教師,其中男教師6名,女教師4名.

1)現(xiàn)要從中選2名去參加會議,有多少種不同的選法?

2)選出2名男教師或2名女教師去外地學(xué)習(xí)的選法有多少種?

3)現(xiàn)要從中選出男、女老師各2名去參加會議,有多少種不同的選法?

【答案】145;(221;(390.

【解析】

直接利用組合數(shù)公式,結(jié)合分類加法和分步乘法計數(shù)原理計算,即可求解.

(1)從10名教師中選2名去參加會議的選法種數(shù),

就是從10個不同的元素中取出2個元素的組合數(shù),

(種),

所以要從中選2名去參加會議,有45種選法.

(2)可把問題分成兩類情況:

1類:選出的2名是男教師,有種方法,

2類:選出的2名是女教師,有種方法,

所以選出2名男教師或2名女教師去外地學(xué)習(xí)的選法有種方法.

(3)從6名男教師中選2名的選法有種,

4名女教師中選2名的選法有種,

所以選出男、女老師各2名去參加會議,共有選法種.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求在圖所示的的方格中“圈”的個數(shù).在這里,一條封閉的折線叫做圈,如果這條折線的邊均由方格的邊組成,且折線經(jīng)過的任意一個方格頂點都只與折線的兩條邊相連.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線與直線平行,且過坐標(biāo)原點,圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)設(shè)直線和圓相交于點、兩點,求的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設(shè)圓O,則下列說法中正確的是( )

A.函數(shù)是圓O的一個太極函數(shù)

B.O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)

C.函數(shù)是圓O的一個太極函數(shù)

D.函數(shù)的圖象關(guān)于原點對稱是為圓O的太極函數(shù)的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,分成6組,其頻率分布直方圖如圖所示.

(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程為,離心率,且短軸長為4.

求橢圓的方程;

已知,,若直線l與圓相切,且交橢圓EC、D兩點,記的面積為,記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程fx)﹣m=0恰有兩個實根,則實數(shù)m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,左、右頂點分別為、,線段的長為4.點在橢圓上且位于第一象限,過點分別作,,直線,交于點.

(1)若點的橫坐標(biāo)為-1,求點的坐標(biāo);

(2)直線與橢圓的另一交點為,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時參加一個外貿(mào)公司的招聘,招聘分筆試與面試兩部分,先筆試后面試.甲筆試與面試通過的概率分別為0.8,0.5,乙筆試與面試通過的概率分別為0.8,0.4,且筆試通過了才能進入面試,面試通過則直接招聘錄用,兩人筆試與面試相互獨立互不影響.

(1)求這兩人至少有一人通過筆試的概率;

(2)求這兩人筆試都通過卻都未被錄用的概率;

(3)記這兩人中最終被錄用的人數(shù)為X,X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案