【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.

【答案】
(1)解:函數(shù)f(x)=x3﹣9x的導(dǎo)數(shù)為f′(x)=3x2﹣9,

f(0)=0,f′(0)=﹣9,直線l的方程為y=﹣9x,

設(shè)l與曲線y=g(x)相切于點(m,n),

g′(x)=6x,g′(m)=6m=﹣9,解得m=﹣ ,

g(m)=﹣9m,即g(﹣ )= +a= ,

解得a=


(2)解:記F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,

F′(x)=3x2﹣6x﹣9,

由F′(x)=0,可得x=3或x=﹣1.

當(dāng)x<﹣1時,F(xiàn)′(x)>0,F(xiàn)(x)遞增;

當(dāng)﹣1<x<3時,F(xiàn)′(x)<0,F(xiàn)(x)遞減;

當(dāng)x>3時,F(xiàn)′(x)>0,F(xiàn)(x)遞增.

可得x=﹣1時,F(xiàn)(x)取得極大值,且為5﹣a,

x=3時,F(xiàn)(x)取得極小值,且為﹣27﹣a,

因為當(dāng)x→+∞,F(xiàn)(x)→+∞;x→﹣∞,F(xiàn)(x)→﹣∞.

則方程f(x)=g(x)有三個不同實數(shù)解的等價條件為:

5﹣a>0,﹣27﹣a<0,

解得﹣27<a<5


【解析】(1)求出f(x)的導(dǎo)數(shù)和切線的斜率和方程,設(shè)l與曲線y=g(x)相切于點(m,n),求出g(x)的導(dǎo)數(shù),由切線的斜率可得方程,求得a的值;(2)記F(x)=f(x)﹣g(x)=x3﹣9x﹣3x2﹣a,求得導(dǎo)數(shù)和單調(diào)區(qū)間,極值,由題意可得方程f(x)=g(x)有三個不同實數(shù)解的等價條件為極小值小于0,極大值大于0,解不等式即可得到所求范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有兩臺不同機器AB生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;

完成下列列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計

良好以上含良好

合格

合計

已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?

附:獨立性檢驗計算公式:

臨界值表:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛行器在4千米高空飛行,從距著陸點A的水平距離10千米處開始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當(dāng)x>1時,f(x)+ <0恒成立,求實數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時, + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:

(1)橢圓的焦點在軸上,焦距為4,且經(jīng)過點;

(2)雙曲線的焦點在軸上,右焦點為,過作重直于軸的直線交雙曲線于,兩點,且,離心率為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點,點F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求證:DE∥平面A1C1F;

(2)求證:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:的焦距為2,一條準(zhǔn)線方程為x=,A,B分別為橢圓的右頂點和上頂點,點P,Q在的橢圓上,且點P在第一象限.

(1)求橢圓E的標(biāo)準(zhǔn)方程;

(2)若點P,Q關(guān)于坐標(biāo)原點對稱,且PQ⊥AB,求四邊形ABCD的面積;

(3)若AP,BQ的斜率互為相反數(shù),求證:PQ斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知,且,求證:;

(2)解關(guān)于的不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 方程 有兩個不相等的負(fù)實根,

命題 不等式 的解集為 ,

(1)若為真命題,求 的取值范圍.

(2)若 為真命題, 為假命題,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案