【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長(zhǎng)為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2) .
【解析】試題分析:(1)取的中點(diǎn),連接,根據(jù)條件證明出和即可;
(2)分別以直線為軸和軸, 點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求出平面和平面的法向量,即可求得二面角的余弦值.
試題解析:
(1)取的中點(diǎn),連接,依題意易知,
平面平面平面 .
又 ,所以平面,所以.
在和中, .
因?yàn)?/span>, 平面,所以平面.
(2)分別以直線為軸和軸, 點(diǎn)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,
依題意有: , , ,
設(shè)平面的一個(gè)法向量,由,得,
由,得,令,可得.
又平面的一個(gè)法向量,所以.
所以二面角的余弦值為.
注:用其他方法同樣酌情給分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.
(Ⅰ)計(jì)算的值,猜想的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在調(diào)查運(yùn)動(dòng)員是否服用過(guò)興奮劑的時(shí)候,給出兩個(gè)問(wèn)題作答,無(wú)關(guān)緊要的問(wèn)題是:“你的身份證號(hào)碼的尾數(shù)是奇數(shù)嗎?”敏感的問(wèn)題是:“你服用過(guò)興奮劑嗎?”然后要求被調(diào)查的運(yùn)動(dòng)員擲一枚硬幣,如果出現(xiàn)正面,就回答第一個(gè)問(wèn)題,否則回答第二個(gè)問(wèn)題.由于回答哪一個(gè)問(wèn)題只有被測(cè)試者自己知道,所以應(yīng)答者一般樂(lè)意如實(shí)地回答問(wèn)題.若我們把這種方法用于300個(gè)被調(diào)查的運(yùn)動(dòng)員,得到80個(gè)“是”的回答,則這群運(yùn)動(dòng)員中服用過(guò)興奮劑的百分率大約為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面平面, 為的中點(diǎn), 是棱上的點(diǎn), , , .
(1)求證:平面平面;
(2)若二面角大小為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中, , , ,平面平面,四邊形是矩形, ,點(diǎn)在線段上,且.
(1)求證: 平面;
(2)求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)轉(zhuǎn)盤(pán)游戲,轉(zhuǎn)盤(pán)被平均分成10等份(如圖所示),轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.游戲規(guī)則如下:兩個(gè)人參加,先確定猜數(shù)方案,甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),乙猜,若猜出的結(jié)果與轉(zhuǎn)盤(pán)轉(zhuǎn)出的數(shù)字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數(shù)方案從以下三種方案中選一種:
A.猜“是奇數(shù)”或“是偶數(shù)”
B.猜“是4的整數(shù)倍數(shù)”或“不是4的整數(shù)倍數(shù)”
C.猜“是大于4的數(shù)”或“不是大于4的數(shù)”
請(qǐng)回答下列問(wèn)題:
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數(shù)方案,并且怎樣猜?為什么?
(2)為了保證游戲的公平性,你認(rèn)為應(yīng)制定哪種猜數(shù)方案?為什么?
(3)請(qǐng)你設(shè)計(jì)一種其他的猜數(shù)方案,并保證游戲的公平性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()經(jīng)過(guò)與兩點(diǎn).
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),橢圓上一點(diǎn)滿足,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)從某班的一次期末考試中,隨機(jī)的抽取了七位同學(xué)的數(shù)學(xué)(滿分150分)、物理(滿分110分)成績(jī)?nèi)缦卤硭,?shù)學(xué)、物理成績(jī)分別用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求關(guān)于t的回歸方程;
(2)利用(1)中的回歸方程,分析數(shù)學(xué)成績(jī)的變化對(duì)物理成績(jī)的影響,并估計(jì)該班某學(xué)生數(shù)學(xué)成績(jī)130分時(shí),他的物理成績(jī)(精確到個(gè)位).
附:回歸方程 中斜率和截距的最小二乘估計(jì)公式分別為:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(i)求的取值范圍;
(ii)設(shè)兩個(gè)極值點(diǎn)分別為, ,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com