【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)一切, 恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對(duì)一切,都有成立.
【答案】(1)遞增區(qū)間是,遞減區(qū)間是;(2);(3)見解析
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)數(shù)的不等式,即可求解函數(shù)的單調(diào)區(qū)間;
(2)問題可化為對(duì)一切恒成立,令,根據(jù)函數(shù)的單調(diào)性求出的最小值,從而求出的取值范圍即可;
(3)問題等價(jià)于,即證,令,根據(jù)函數(shù)的單調(diào)性即可作出證明.
試題解析:
(1),得由,得
∴的遞增區(qū)間是,遞減區(qū)間是
(2)對(duì)一切, 恒成立,
可化為對(duì)一切恒成立.
令, ,
當(dāng)時(shí), ,即在遞減
當(dāng)時(shí), ,即在遞增,∴,
∴,即實(shí)數(shù)的取值范圍是
(3)證明: 等價(jià)于,即證
由(1)知,(當(dāng)時(shí)取等號(hào))
令,則,易知在遞減,在遞增
∴(當(dāng)時(shí)取等號(hào))∴對(duì)一切都成立
則對(duì)一切,都有成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={1,2,3},N={1,2,3,4},定義函數(shù)f:M→N.若點(diǎn)A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圓圓心為D,且 ,則滿足條件的函數(shù)f(x)有( )
A.6個(gè)
B.10個(gè)
C.12個(gè)
D.16個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形ABCD的邊AB=m,BC=4,PA⊥平面ABCD,PA=3,現(xiàn)有數(shù)據(jù):
① ;②m=3;③m=4;④ .若在BC邊上存在點(diǎn)Q(Q不在端點(diǎn)B、C處),使PQ⊥QD,則m可以。 )
A.①②
B.①②③
C.②④
D.①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試說明的圖象由函數(shù)的圖象經(jīng)過怎樣的變化得到?并求的單調(diào)區(qū)間;
(2)若函數(shù)與的圖象關(guān)于直線對(duì)稱,當(dāng)時(shí),求函數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位N名員工參加“社區(qū)低碳你我他”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布圖如圖所示,下表是年齡的頻率分布表.
(1)現(xiàn)要從年齡較小的第組中用分層抽樣的方法抽取6人,則年齡第組人數(shù)分別是多少?
(2)在(1)的條件下,從這6中隨機(jī)抽取2參加社區(qū)宣傳交流活動(dòng),求恰有2人在第3組的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)進(jìn)入某商場的每一位顧客購買甲種商品的概率為0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨(dú)立,各顧客之間購買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場的1位顧客購買甲、乙兩種商品中的一種的概率;
(2)求進(jìn)入商場的1位顧客至少購買甲、乙兩種商品中的一種的概率;
(3)記ξ表示進(jìn)入商場的3位顧客中至少購買甲、乙兩種商品中的一種的人數(shù),求ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)m取什么數(shù)值時(shí),復(fù)數(shù)z=m2﹣1+(m2﹣m﹣2)i分別是:
(1)實(shí)數(shù)?
(2)虛數(shù)?
(3)純虛數(shù)?
(4)表示復(fù)數(shù)z的點(diǎn)在復(fù)平面的第四象限?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com