【題目】如圖,棱長為1的正方體中,為線段的動點,則下列4個命題中正確的有( )個
(1) (2)平面平面
(3)的最大值為 (4)的最小值為
A.1B.2C.3D.4
【答案】C
【解析】
分別連接, ,作出圖形后逐一
對于(1),利用線面垂直的判定定理可證平面,而平面,故(1)正確;
對于(2),平面,而平面,就是平面,
故平面平面,從而可判定(2)正確;
對于(3),當(dāng)時,為鈍角,故可判斷(3)錯誤;
對于(4),將面與面沿展成平面圖形,線段即為的最小值,通過解三角形可求得,可判斷(4)正確.
分別連接, ,如圖:
對于(1),∵平面,平面,∴ ,又 , ,
∴ 平面, 平面,∴,正確;
對于(2),∵平面即為平面,平面即為平面,
且 平面,
∴平面 平面,
∴平面平面,正確;
對于(3),在中,由余弦定理可知,當(dāng)時,為鈍角,錯誤;
對于(4),將面與面沿展成平面圖形,線段即為的最小值,
在中,利用余弦定理解三角形得,正確.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)函數(shù)與的圖象有三個不同的交點時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,是曲線段:(是參數(shù),)的左、右端點,是上異于,的動點,過點作直線的垂線,垂足為.
(1)建立適當(dāng)?shù)臉O坐標(biāo)系,寫出點軌跡的極坐標(biāo)方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域,部分對應(yīng)值如表,的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的結(jié)論正確的是( )
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
A.函數(shù)的極大值點有2個
B.函數(shù)在上是減函數(shù)
C.若時,的最大值是2,那么的最大值為4
D.當(dāng)時,函數(shù)有4個零點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個)與對應(yīng)年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個數(shù)是( )
①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)
②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個
③可預(yù)測 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點,且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過原點的直線與橢圓C交于P、Q兩點,且在直線上存在點M,使得為等邊三角形,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為.
(1)問該廠至少有多少名維修工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不小于?
(2)已知1名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,能使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為圖象的一個對稱中心,為圖象的一條對稱軸,且在上單調(diào),則符合條件的值之和為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com