【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(為常數(shù),且),直線與曲線交于兩點.
(1)若,求實數(shù)的值;
(2)若點的直角坐標(biāo)為,且,求實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且其離心率為,過坐標(biāo)原點作兩條互相垂直的射線與橢圓分別相交于,兩點.
(1)求橢圓的方程;
(2)是否存在圓心在原點的定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,是軸上關(guān)于原點對稱的兩定點,點滿足,點的軌跡為曲線.
(1)求的方程;
(2)過的直線與交于點,線段的中點為,的中垂線分別與軸、軸交于點,問是否成立?若成立,求出直線的方程;若不成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若,求函數(shù)的極值和單調(diào)區(qū)間;
(II)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù),).在以O為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求和的普通方程;
(2)若直線l的極坐標(biāo)方程為,其中滿足,若曲線和的公共點均在l上,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為F,點,過M的直線與橢圓E交于A,B兩點,線段AB中點為C,設(shè)橢圓E在A,B兩點處的切線相交于點P,O為坐標(biāo)原點.
(1)證明:O、C、P三點共線;
(2)已知是拋物線的弦,所在直線過該拋物線的準(zhǔn)線與y軸的交點,是弦在兩端點處的切線的交點,小明同學(xué)猜想:在定直線上.你認(rèn)為小明猜想合理嗎?若合理,請寫出所在直線方程;若不合理,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,數(shù)列中的每一項均在集合中,且任意兩項不相等,又對于任意的整數(shù),均有.例如時,數(shù)列為或.
(1)當(dāng)時,試求滿足條件的數(shù)列的個數(shù);
(2)當(dāng),求所有滿足條件的數(shù)列的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某學(xué)校組織教師進行“學(xué)習(xí)強國”知識競賽,規(guī)則為:每位參賽教師都要回答3個問題,且對這三個問題回答正確與否相互之間互不影響,若每答對1個問題,得1分;答錯,得0分,最后按照得分多少排出名次,并分一、二、三等獎分別給予獎勵.已知對給出的3個問題,教師甲答對的概率分別為,,p.若教師甲恰好答對3個問題的概率是,則________;在前述條件下,設(shè)隨機變量X表示教師甲答對題目的個數(shù),則X的數(shù)學(xué)期望為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com