若直線y=x+k與曲線x=
恰有一個公共點,則k的取值范圍是___________
試題分析:曲線
表示的是半圓
,結(jié)合圖形可知當(dāng)直線與半圓有一個公共點時滿足
點評:本題主要采用數(shù)形結(jié)合法通過圖形來求解,需要注意的是曲線
表示的是半圓
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
如圖,橢圓長軸端點為
,
為橢圓中心,
為橢圓的右焦點,
且
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點為
,直線
交橢圓于
兩點,問:是否存在直線
,使點
恰為
的垂心?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
交于
A,B兩點,且
(其中
O為坐標(biāo)原點),若
OM⊥
AB于
M,則點
M的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分10分)
已知點
,參數(shù)
,點Q在曲線C:
上.
(1)求在直角坐標(biāo)系中點
的軌跡方程和曲線C的方程;
(2)求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)設(shè)
為拋物線
的焦點,
為拋物線上任意一點,已
為圓心,
為半徑畫圓,與
軸負半軸交于
點,試判斷過
的直線與拋物線的位置關(guān)系,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
橢圓
的左、右焦點分別為
、
,點
,
滿足
.
(1)求橢圓的離心率
;
(2)設(shè)直線
與橢圓相交于
兩點,若直線
與圓
相交于
兩點,且
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
,點
,直線
、
都是圓
的切線(
點不在
軸上)。
⑴求過點
且焦點在
軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點
作直線
與⑴中的拋物線相交于
、
兩點,問是否存在定點
,使
.
為常數(shù)?若存在,求出點
的坐標(biāo)與常數(shù);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
:
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線
與橢圓交于
兩點,與拋物線交于
兩點,且
。
(1)求橢圓
的方程;
(2)若過點
的直線與橢圓
相交于兩點
,設(shè)
為橢圓
上一點,且滿足
為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知點
為拋物線
:
的焦點,
為拋物線
上的點,且
.
(Ⅰ)求拋物線
的方程和點
的坐標(biāo);
(Ⅱ)過點
引出斜率分別為
的兩直線
,
與拋物線
的另一交點為
,
與拋物線
的另一交點為
,記直線
的斜率為
.
(。┤
,試求
的值;
(ⅱ)證明:
為定值.
查看答案和解析>>