【題目】已知函數(shù)f(x)=x2+|x|﹣|x﹣5|+2.
(1)求不等式f(x)<0的解集;
(2)若關(guān)于x的不等式|f(x)|≤m的整數(shù)解僅有11個(gè),求m的取值范圍.
【答案】
(1)解:當(dāng)x≤0時(shí),f(x)=x2﹣x+x﹣5+2=x2﹣3,
由x2﹣3<0解得﹣ <x< ,取﹣ <x≤0;
當(dāng)0<x<5時(shí),f(x)=x2+x+x﹣5+2=x2+2x﹣3,
由x2+2x﹣3<0解得﹣3<x<1,取0<x<1;
當(dāng)x≥5時(shí),f(x)=x2+x﹣x+5+2=x2+7,
由x2+7<0無(wú)解;
綜上,不等式f(x)<0的解集為(﹣ ,1)
(2)解:由(1)知,f(x)= ,
畫(huà)出f(x)的圖象如圖所示;
若關(guān)于x的不等式|f(x)|≤m的整數(shù)解僅有11個(gè),
當(dāng)m=32時(shí),由x2+7≤32,解得x≤5;
由x2﹣3≤32,解得﹣ ≤x,
滿足不等式|f(x)|≤m的整數(shù)解僅有11個(gè);
當(dāng)m=33時(shí),由x2+7≤33,解得x≤ ;
由x2﹣3≤33,解得﹣6≤x,
滿足不等式|f(x)|≤m的整數(shù)解僅有12個(gè);
不滿足題意;
當(dāng)m=31時(shí),由x2+7≤31,解得x≤ ;
由x2﹣3≤31,解得﹣ ≤x,
滿足不等式|f(x)|≤m的整數(shù)解僅有10個(gè);
不滿足題意;
綜上,m的取值范圍是[32,33).
【解析】(1)討論x的取值,去掉絕對(duì)值,化簡(jiǎn)f(x),求出不等式f(x)<0的解集;(2)由(1)寫(xiě)出f(x)解析式,畫(huà)出f(x)的圖象,結(jié)合圖象,求出不等式|f(x)|≤m的整數(shù)解僅有11個(gè)時(shí),求出m的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的絕對(duì)值不等式的解法,需要了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào)才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,
(1)證明:是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說(shuō)明理由。
()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)在同一個(gè)周期內(nèi),當(dāng)時(shí)y取最大值1,當(dāng)時(shí),y取最小值﹣1.
(1)求函數(shù)的解析式y=f(x);
(2)函數(shù)y=sinx的圖象經(jīng)過(guò)怎樣的變換可得到y=f(x)的圖象?
(3)若函數(shù)f(x)滿足方程f(x)=a(0<a<1),求在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f( )=﹣ x3+ x2﹣m,g(x)=﹣ x3+mx2+(a+1)x+2xcosx﹣m.
(1)若曲線y=f(x)僅在兩個(gè)不同的點(diǎn)A(x1 , f(x1)),B(x1 , f(x2))處的切線都經(jīng)過(guò)點(diǎn)(2,t),求證:t=3m﹣8,或t=﹣ m3+ m2﹣m.
(2)當(dāng)x∈[0,1]時(shí),若f(x)≥g(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,已知,邊上的中線所在直線方程為,的角平分線所在直線的方程為。求
(1)求頂點(diǎn)的坐標(biāo);
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)既是奇函數(shù),又在[﹣1,1]上單調(diào)遞增是( )
A.f(x)=|sinx|
B.f(x)=ln
C.f(x)= (ex﹣e﹣x)
D.f(x)=ln( ﹣x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓與雙曲線有相同的焦點(diǎn),,橢圓的一個(gè)短軸端點(diǎn)為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD=4,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE,構(gòu)成四棱錐A1﹣BCDE,若M為線段A1C的中點(diǎn),在翻轉(zhuǎn)過(guò)程中有如下4個(gè)命題: ①M(fèi)B∥平面A1DE;
②存在某個(gè)位置,使DE⊥A1C;
③存在某個(gè)位置,使A1D⊥CE;
④點(diǎn)A1在半徑為 的圓面上運(yùn)動(dòng),
其中正確的命題個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】到兩互相垂直的異面直線的距離相等的點(diǎn),在過(guò)其中一條直線且平行于另一條直線的平面內(nèi)的軌跡是( )
A.直線
B.橢圓
C.拋物線
D.雙曲線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com