函數(shù)(為常數(shù))的圖象過原點(diǎn),且對(duì)任意 總有成立;
(1)若的最大值等于1,求的解析式;
(2)試比較與的大小關(guān)系.
(1);(2);
解析試題分析:(1)本小題主要利用函數(shù)圖形過原點(diǎn)、函數(shù)的最大值、函數(shù)最值即為函數(shù)的極值點(diǎn)建立參數(shù)的等量關(guān)系式,然后解方程組可得;
(2)本小題主要利用函數(shù)圖形過原點(diǎn)、函數(shù)的最大值、函數(shù)最值即為函數(shù)的極值點(diǎn)建立參數(shù)的等量關(guān)系式,可得,,、,通過作差比較可得結(jié)論;
試題解析:(1)由 4分
解得,
所以。 8分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/78/8/j6keu.png" style="vertical-align:middle;" />、,為最大值,
所以, 10分
而、,所以, 12分
所以,即。 14分
考點(diǎn):1.求導(dǎo)的公式與法則;2.作差比較法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及的取值范圍;
(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知實(shí)數(shù)函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若≥對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ).求函數(shù)的單調(diào)區(qū)間及的取值范圍;
(Ⅱ).若函數(shù)有兩個(gè)極值點(diǎn)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)a>ln2-1且x>0時(shí),ex>x2-2ax+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求的極值;
(Ⅱ)若在定義域內(nèi)無(wú)極值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為自然對(duì)數(shù)的底)
(1)求的最小值;
(2)設(shè)不等式的解集為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
【題文】已知函數(shù).
(1)若在處取得極大值,求實(shí)數(shù)的值;
(2)若,求在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),求函數(shù)在處的切線方程;
(2)設(shè).
①求函數(shù)的單調(diào)區(qū)間;
②若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/1e/3/tnl6b.png" style="vertical-align:middle;" />,求函數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com