設橢圓C:(a>b>0) 的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且,
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過A,Q,F(xiàn)2三點的圓恰好與直線l:相切,求橢圓C的方程:
(Ⅲ)在(Ⅱ)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M,N兩點,在x軸上是否存在點P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.
解:(Ⅰ)設,由,
,
,
,得F1的中點,
,
,
故橢圓的離心率
(Ⅱ)由(Ⅰ)知,即,
于是
的外接圓圓心為,半徑
所以,由已知,得,解得:a=2,
,
所求橢圓方程為。
(Ⅲ)由(Ⅱ)知
,

,
,
由于菱形對角線垂直,則,


,
由已知條件知k≠0且k∈R,
,∴,
故存在滿足題意的P且m的取值范圍是。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆廣東肇慶高二上學期期末質量檢測文科數(shù)學卷(解析版) 題型:選擇題

設橢圓C:(a>b>0)的左、右焦點分別為F1、F2,P是C上的點,,則C的離心率為(   )

A.          B.          C.     D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江省高二上學期期末考試文科數(shù)學 題型:解答題

(12分)

設橢圓C:(a>b>0)過點(0,4),離心率為

(1)   求C的方程。

(2)   求過點(3,0)且斜率為 的直線被橢圓C所截線段的中點坐標。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省高考真題 題型:解答題

設橢圓C:(a>b>0)過點(0,4),離心率為,
(Ⅰ)求C的方程;
(Ⅱ)求過點(3,0)且斜率為的直線被C所截線段的中點坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:2009年上海市崇明縣高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

設橢圓C:(a>b>0)的一個頂點坐標為A(),且其右焦點到直線的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(),求證:點M的所有“相關弦”的中點在同一條直線上;
(3)對于問題(2),如果點M坐標為M(t,0),當t滿足什么條件時,點M(t,0)存在無窮多條“相關弦”,并判斷點M的所有“相關弦”的中點是否在同一條直線上.

查看答案和解析>>

同步練習冊答案